Abstract

Liquid lithium is expected to be the promising coolant for the next generation of space nuclear reactor power sources, and pipe structures have critical impacts on the flow and heat transfer characteristics, whereas related studies are still incomplete. In this work, a steady-state non-isothermal heat transfer model with modified turbulent Prandtl number is developed for the turbulent flow of liquid lithium in elbows with different bends. The results demonstrate that liquid lithium has best performance in a 90 deg bend in the Pe range of 320–955, which has the highest heat transfer performance per unit pressure drop and exhibits the lowest entropy generation. Due to the difference in flow velocity between the inner and outer sides of the pipe, a high-temperature region exists in the inner-wall area from the pipe bend and migrates from the wall side to the center area in the exit area. When decreasing the flow velocity and increasing the wall heat flow density, a more significant increase in the percentage of the high-temperature region is demonstrated on the inner wall side of the pipe in the exit area of the bend. Under a given total length of L, the inlet length H with the H/L ratio of 0.025 has the minimum entropy generation within the unit pressure drop, and is the best U-tube structure. This work provides comprehensive investigations on flow and heat transfer characteristics of liquid lithium in bends and U-tubes and inspires practical applications.

References

1.
Wu
,
Y.
,
Bai
,
Y.
,
Song
,
Y.
,
Huang
,
Q.
,
Zhao
,
Z.
, and
Hu
,
L.
,
2016
, “
Development Strategy and Conceptual Design of China Lead-Based Research Reactor
,”
Ann. Nucl. Energy
,
87
, pp.
511
516
.
2.
Wong
,
C. P. C.
,
Salavy
,
J. F.
,
Kim
,
Y.
,
Kirillov
,
I.
,
Rajendra Kumar
,
E.
,
Morley
,
N. B.
,
Tanaka
,
S.
, and
Wu
,
Y. C.
,
2008
, “
Overview of Liquid Metal TBM Concepts and Programs
,”
Fusion Eng. Des.
,
83
(
7–9
), pp.
850
857
.
3.
Fisher
,
A. E.
,
Kolemen
,
E.
, and
Hvasta
,
M. G.
,
2018
, “
Experimental Demonstration of Hydraulic Jump Control in Liquid Metal Channel Flow Using Lorentz Force
,”
Phys. Fluids
,
30
(
6
), p.
067104
.
4.
Ma
,
W.
,
Karbojian
,
A.
,
Hollands
,
T.
, and
Koch
,
M. K.
,
2011
, “
Experimental and Numerical Study on Lead-Bismuth Heat Transfer in a Fuel Rod Simulator
,”
J. Nucl. Mater.
,
415
(
3
), pp.
415
424
.
5.
Kirillov
,
I. R.
,
2000
, “
Lithium Cooled Blanket of RF DEMO Reactor
,”
Fusion Eng. Des.
,
49–50
, pp.
457
465
.
6.
Satpathy
,
K.
,
Velusamy
,
K.
,
Patnaik
,
B. S. V.
, and
Chellapandi
,
P.
,
2013
, “
Numerical Simulation of Liquid Fall Induced Gas Entrainment and Its Mitigation
,”
Int. J. Heat Mass Transfer
,
60
(
1
), pp.
392
405
.
7.
Ge
,
Z.
,
Liu
,
J.
,
Zhao
,
P.
,
Nie
,
X.
, and
Ye
,
M.
,
2017
, “
Investigation on the Applicability of Turbulent-Prandtl-Number Models in Bare Rod Bundles for Heavy Liquid Metals
,”
Nucl. Eng. Des.
,
314
, pp.
198
206
.
8.
Govindha Rasu
,
N.
,
Velusamy
,
K.
,
Sundararajan
,
T.
, and
Chellapandi
,
P.
,
2014
, “
Simultaneous Development of Flow and Temperature Fields in Wire-Wrapped Fuel Pin Bundles of Sodium Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
267
, pp.
44
60
.
9.
Li
,
Y.
,
Lv
,
K.
,
Chen
,
L.
,
Gao
,
S.
, and
Huang
,
Q.
,
2015
, “
Experiments and Analysis on LBE Steady Natural Circulation in a Rectangular Shape Loop
,”
Prog. Nucl. Energy
,
81
, pp.
239
244
.
10.
Pouryazdanpanah
,
K. E.
, and
Chen
,
Y. T.
,
2020
, “
Study of Magnetic Field Effects on the Oxygen Transfer in Liquid Lead Cavity Flow Using the Lattice Boltzmann Method
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
2
), p.
022107
.
11.
Tenchine
,
D.
,
2010
, “
Some Thermal Hydraulic Challenges in Sodium Cooled Fast Reactors
,”
Nucl. Eng. Des.
,
240
(
5
), pp.
1195
1217
.
12.
Recebli
,
Z.
,
Selimli
,
S.
, and
Gedik
,
E.
,
2013
, “
Three Dimensional Numerical Analysis of Magnetic Field Effect on Convective Heat Transfer During the MHD Steady State Laminar Flow of Liquid Lithium in a Cylindrical Pipe
,”
Comput. Fluids
,
88
, pp.
410
417
.
13.
He
,
Q.
,
Feng
,
J.
, and
Chen
,
H.
,
2016
, “
Numerical Analysis and Optimization of 3D Magnetohydrodynamic Flows in Rectangular U-Bend
,”
Fusion Eng. Des.
,
109–111
, pp.
1313
1317
.
14.
de Les Valls
,
E. M.
,
Batet
,
L.
,
De Medina
,
V.
,
Fradera
,
J.
, and
Sedano
,
L.
,
2011
, “
Modelling of Integrated Effect of Volumetric Heating and Magnetic Field on Tritium Transport in a U-Bend Flow as Applied to HCLL Blanket Concept
,”
Fusion Eng. Des.
,
86
(
4–5
), pp.
341
356
.
15.
Molokov
,
S.
, and
Bühler
,
L.
,
1994
, “
Liquid Metal Flow in a U-Bend in a Strong Uniform Magnetic Field
,”
J. Fluid Mech.
,
267
, pp.
325
352
.
16.
Ma
,
W.
,
Karbojian
,
A.
,
Sehgal
,
B. R.
, and
Dinh
,
T. N.
,
2009
, “
Thermal-Hydraulic Performance of Heavy Liquid Metal in Straight-Tube and U-Tube Heat Exchangers
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1323
1330
.
17.
Cheng
,
X.
, and
Tak
,
N. I.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead-Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.
18.
Jeppson
,
D. W.
,
Ballif
,
J. L.
,
Yuan
,
W. W.
, and
Chou
,
B. E.
,
2003
, “
Lithium Literature Review: Lithium’s Properties and Interactions
,”
J. Membr. Sci.
,
222
(
1–2
), pp.
235
247
.
19.
Davison
,
H. W.
,
1968
,
Compilation of Thermophysical Properties of Liquid Lithium
,
National Aeronautics and Space Administration
,
Washington, DC
.
20.
Mochizuki
,
H.
,
2018
, “
Consideration on Nusselt Numbers of Liquid Metals Under Low Peclet Number Conditions
,”
Nucl. Eng. Des.
,
339
(
7
), pp.
171
180
.
You do not currently have access to this content.