Abstract

Hyperthermia has been in use for many years, as a potential alternative modality for cancer treatment. In this paper, an experimental investigation of microwave-assisted thermal heating (MWATH) of tissue phantom using a domestic microwave oven has been reported. Computer simulations using finite element method-based tools were also carried out to support the experimental observations and probe insight into the thermal transport aspects deep within the tissue phantom. A good agreement between predicted and measured temperature was achieved. Furthermore, experiments were conducted to investigate the efficacy of dielectric nanoparticles, namely, alumina (Al2O3) and titanium oxide (TiO2) during the MWATH of nanoparticle-infused tumor phantoms. A deep-seated tumor injected with nanoparticle solution was specifically mimicked in the experiments. Interesting results were obtained in terms of spatiotemporal thermal history of the nanoparticle-infused tissue phantoms. An elevation in the temperature distribution was achieved in the vicinity of the targeted zone due to the presence of nanoparticles, and the spatial distribution of temperature was grossly morphed. We conclusively show, using experiments and simulations that unlike other nanoparticle-mediated hyperthermia techniques, direct injection of the nanoparticles within the tumor leads to enhanced heat generation in the neighboring healthy tissues. The inhomogeneity of the hyperthermia event is evident from the local occurrence of hot spots and cold spots, respectively. The present findings may have far-reaching implications as a framework in predicting temperature distributions during microwave ablation (MWA).

References

1.
WHO
,
2018
, “
World Health Organization Cancer Fact Sheet
,” https://www.who.int/en/news-room/fact-sheets/detail/cancer, Accessed 24 April 2020.
2.
Bruix
,
J.
,
Reig
,
M.
, and
Sherman
,
M.
,
2016
, “
Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma
,”
Gastroenterology
,
150
(
4
), pp.
835
853
.
3.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2016
, “
Thermal Assessment of Ablation Limit of Subsurface Tumor During Focused Ultrasound and Laser Heating
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011012
.
4.
Montienthong
,
P.
, and
Rattanadecho
,
P.
,
2019
, “
Focused Ultrasound Ablation for the Treatment of Patients With Localized Deformed Breast Cancer: Computer Simulation
,”
ASME J. Heat Transfer
,
141
(
10
), p.
101101
.
5.
Shamekhi
,
L.
,
Sayehvand
,
H.-O.
, and
Karami
,
H.
,
2020
, “
Tumour Shape-Dependent Microwave Hyperthermia Using a Novel Coaxial Micro-cut Slot Antenna
,”
J. Therm. Biol.
,
88
, p.
102473
.
6.
Seki
,
T.
,
Wakabayashi
,
M.
,
Nakagawa
,
T.
,
Itho
,
T.
,
Shiro
,
T.
,
Kunieda
,
K.
,
Sato
,
M.
,
Uchiyama
,
S.
, and
Inoue
,
K.
,
1994
, “
Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma
,”
Cancer
,
74
(
3
), pp.
817
842
.
7.
Laeseke
,
P.
,
Lee
,
F.
,
Weide
,
D. V. D.
, and
Brace
,
C.
,
2009
, “
Multiple-Antenna Microwave Ablation: Spatially Distributing Power Improves Thermal Profiles and Reduces Invasiveness
,”
J. Interv. Oncol.
,
2
(
2
), pp.
65
72
.
8.
Harari
,
C.
,
Magagna
,
M.
,
Bedoya
,
M.
,
Lee
,
F.
,
Lubner
,
M.
,
Hinshaw
,
J.
,
Ziemlewicz
,
T.
, and
Brace
,
C.
,
2016
, “
Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems
,”
Radiology
,
278
(
1
), pp.
95
103
.
9.
Knavel
,
E.
,
Hinshaw
,
J.
,
Lubner
,
M.
,
Andreano
,
A.
,
Warner
,
T.
,
Lee
,
F.
, and
Brace
,
C.
,
2012
, “
High Powered gas-Cooled Microwave Ablation: Shaft Cooling Creates an Effective Stick Function Without Altering the Ablation Zone
,”
AJR, Am. J. Roentgenol.
,
198
(
3
), pp.
W260
W265
.
10.
Poulou
,
L.
,
Botsa
,
E.
,
Thanou
,
I.
,
Ziakas
,
P.
, and
Thanos
,
L.
,
2015
, “
Percutaneous Microwave Ablation vs Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma
,”
World J. Hepatol.
,
7
(
8
), pp.
1054
1063
.
11.
Kim
,
C.
,
2018
, “
Understanding the Nuances of Microwave Ablation for More Accurate Post Treatment Assessment
,”
Future Oncol.
,
14
(
17
), pp.
1755
1764
.
12.
Prakash
,
P.
,
2010
, “
Theoretical Modeling for Hepatic Microwave Ablation
,”
Open Biomed Eng. J.
,
4
, pp.
27
38
.
13.
Chiang
,
J.
,
Wang
,
P.
, and
Brace
,
C.
,
2013
, “
Computational Modelling of Microwave Tumour Ablations
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
308
325
.
14.
Cavagnaro
,
M.
,
Pinto
,
R.
, and
Lopresto
,
V.
,
2015
, “
Numerical Models to Evaluate the Temperature Increase Induced by Ex vivo Microwave Thermal Ablation
,”
Phys. Med. Biol.
,
60
(
8
), pp.
3287
3311
.
15.
Barauskas
,
R.
,
Gulbinas
,
A.
,
Vanagas
,
T.
, and
Barauskas
,
G.
,
2008
, “
Finite Element Modeling of Cooled-Tip Probe Radiofrequency Ablation Processes in Liver Tissue
,”
Comput. Biol. Med.
,
38
(
6
), pp.
694
708
.
16.
Lu
,
Y.
,
Nan
,
Q.
,
Li
,
L.
, and
Liu
,
Y.
,
2009
, “
Numerical Study on Thermal Field of Microwave Ablation With Water-Cooled Antenna
,”
Int. J. Hyperthermia
,
25
(
2
), pp.
108
115
.
17.
Liu
,
D.
, and
Brace
,
C.
,
2017
, “
Numerical Simulation of Microwave Ablation Incorporating Tissue Contraction Based on Thermal Dose
,”
Phys. Med. Biol.
,
62
(
6
), pp.
2070
2086
.
18.
Xu
,
Y.
,
Moser
,
M. A.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Large and Round Ablation Zones With Microwave Ablation: A Preliminary Study of an Optimal Aperiodic Tri-slot Coaxial Antenna With the -Matching Network Section
,”
Int. J. Therm. Sci.
,
140
, pp.
539
548
.
19.
Singh
,
S.
,
Repaka
,
R.
, and
Al-Jumaily
,
A.
,
2019
, “
Sensitivity Analysis of Critical Parameters Affecting the Efficacy of Microwave Ablation Using Taguchi Method
,”
Int. J. RF Microwave Comput.-Aided Eng.
,
29
(
4
), p.
e21581
.
20.
Yang
,
D.
,
Converse
,
M.
,
Mahvi
,
D.
, and
Webster
,
J.
,
2007
, “
Measurement and Analysis of Tissue Temperature During Microwave Liver Ablation
,”
IEEE Trans. Biomed. Eng.
,
54
(
1
), pp.
150
155
.
21.
Dong
,
B.
,
Liang
,
P.
,
Yu
,
X.
,
Zeng
,
X.
,
Wang
,
P.
,
Su
,
L.
,
Wang
,
X.
,
Xin
,
H.
, and
Li
,
S.
,
1998
, “
Sonographically Guided Microwave Coagulation Treatment of Liver Cancer: An Experimental and Clinical Study
,”
AJR Am. J. Roentgenol
,
171
(
2
), pp.
449
454
.
22.
Brace
,
C.
,
2009
, “
Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?
,”
Curr. Probl. Diagn. Radiol.
,
38
(
3
), pp.
135
143
.
23.
Brace
,
C. L.
,
Laeseke
,
P. F.
,
Sampson
,
L. A.
,
Frey
,
T. M.
,
van der Weide
,
D. W.
, and
Lee
,
F. T.
,
2007
, “
Microwave Ablation With Multiple Simultaneously Powered Small-Gauge Triaxial Antennas: Results From an In-vivo Swine Liver Model
,”
Radiology
,
244
(
1
), pp.
151
156
.
24.
Wright
,
A.
,
Lee
,
F.
, and
Mahvi
,
D.
,
2003
, “
Hepatic Microwave Ablation With Multiple Antennae Results in Synergistically Larger Zones of Coagulation Necrosis
,”
Ann. Surg. Oncol.
,
10
(
3
), pp.
275
283
.
25.
Liang
,
P.
,
Dong
,
B.
,
Yu
,
X.
,
Yu
,
D.
,
Cheng
,
Z.
,
Su
,
L.
,
Peng
,
J.
,
Nan
,
Q.
, and
Wang
,
W.
,
2001
, “
Computer-Aided Dynamic Simulation of Microwave-Induced Thermal Distribution in Coagulation of Liver Cancer
,”
IEEE Trans. Biomed. Eng.
,
48
(
7
), pp.
821
829
.
26.
Ryan
,
T.
,
Turner
,
P.
, and
Hamilton
,
B.
,
2010
, “
Interstitial Microwave Transition From Hyperthermia to Ablation: Historical Perspectives and Current Trends in Thermal Therapy
,”
Int. J. Hyperthermia
,
26
(
5
), pp.
415
433
.
27.
Phasukkit
,
P.
,
Tungjitkusolmun
,
S.
, and
Sangworasil
,
M.
,
2009
, “
Finite-Element Analysis and In-vitro Experiments of Placement Configurations Using Triple Antennas in Microwave Hepatic Ablation
,”
IEEE Trans. Biomed. Eng.
,
56
(
11
), pp.
2564
2572
.
28.
Halim
,
S. A.
, and
Swithenbank
,
J.
,
2019
, “
Simulation Study of Parameters Influencing Microwave Heating of Biomass
,”
J. Energy Inst.
,
92
(
4
), pp.
1191
1212
.
29.
Dolande
,
J.
, and
Datta
,
A.
,
1993
, “
Temperature Profiles in Microwave Heating of Solids: A Systematic Study
,”
J. Microwave Power Electromagn. Energy
,
28
(
2
), pp.
58
67
.
30.
Padua
,
G. W.
,
1993
, “
Microwave Heating of Agar Gels Containing Sucrose
,”
J. Food Sci.
,
58
(
6
), pp.
1426
1428
.
31.
Ni
,
H.
,
Datta
,
A.
, and
Torrance
,
K.
,
1999
, “
Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model
,”
Int. J. Heat Mass Transfer
,
42
(
8
), pp.
1501
1512
.
32.
Clark
,
D. E.
,
Folz
,
D. C.
, and
West
,
J. K.
,
2000
, “
Processing Materials With Microwave Energy
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
153
158
.
33.
Jacob
,
R.
,
Basak
,
T.
, and
Das
,
S. K.
,
2012
, “
Experimental and Numerical Study on Microwave Heating of Nanofluids
,”
Int. J. Therm. Sci.
,
59
, pp.
45
57
.
34.
Bhattacharya
,
M.
, and
Basak
,
T.
,
2020
, “
A Galerkin Finite Element Based Analysis on the Microwave Heating Characteristics of Lossy Samples in the Presence of Low and High Lossy Containers
,”
Int. J. Heat Mass Transfer
,
153
,
119544
, p.
119544
.
35.
Cherbaski
,
R.
, and
Rudniak
,
L.
,
2013
, “
Modelling of Microwave Heating of Water in a Monomode Applicator Influence of Operating Conditions
,”
Int. J. Therm. Sci.
,
74
, pp.
214
229
.
36.
Budd
,
C.
, and
Hill
,
A.
,
2011
, “
A Comparison of Models and Methods for Simulating the Microwave Heating of Moist Foodstuffs
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
807
817
.
37.
Klinbun
,
W.
,
Rattanadecho
,
P.
, and
Pakdee
,
W.
,
2011
, “
Microwave Heating of Saturated Packed bed Using a Rectangular Waveguide (te10 Mode): Influence of Particle Size, Sample Dimension, Frequency, and Placement Inside the Guide
,”
Int. J. Heat Mass Transfer
,
54
(
9
), pp.
1763
1774
.
38.
Wessapan
,
T.
,
Srisawatdhisukul
,
S.
, and
Rattanadecho
,
P.
,
2011
, “
Numerical Analysis of Specific Absorption Rate and Heat Transfer in the Human Body Exposed to Leakage Electromagnetic Field at 915MHz and 2450MHz
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051101
.
39.
von Maltzahn
,
G.
,
Park
,
J.-H.
,
Agrawal
,
A.
,
Bandaru
,
N. K.
,
Das
,
S. K.
,
Sailor
,
M. J.
, and
Bhatia
,
S. N.
,
2009
, “
Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas
,”
Cancer Res.
,
69
(
9
), pp.
3892
3900
.
40.
DasGupta
,
D.
,
von Maltzahn
,
G.
,
Ghosh
,
S.
,
Bhatia
,
S. N.
,
Das
,
S. K.
, and
Chakraborty
,
S.
,
2009
, “
Probing Nanoantenna-Directed Photothermal Destruction of Tumors Using Noninvasive Laser Irradiation
,”
Appl. Phys. Lett.
,
95
(
23
), p.
233701
.
41.
Mooney
,
R.
,
Roma
,
L.
,
Zhao
,
D.
,
Van Haute
,
D.
,
Garcia
,
E.
,
Kim
,
S. U.
,
Annala
,
A. J.
,
Aboody
,
K. S.
, and
Berlin
,
J. M.
,
2014
, “
Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy
,”
ACS Nano
,
8
(
12
), pp.
12450
12460
.
42.
El-Sayed
,
M. A.
,
Shabaka
,
A. A.
,
El-Shabrawy
,
O. A.
,
Yassin
,
N. A.
,
Mahmoud
,
S. S.
,
El-Shenawy
,
S. M.
,
Al-Ashqar
,
E.
,
Eisa
,
W. H.
,
Farag
,
N. M.
,
El-Shaer
,
M. A.
,
Salah
,
N.
, and
Al-Abd
,
A. M.
,
2013
, “
Tissue Distribution and Efficacy of Gold Nanorods Coupled With Laser Induced Photoplasmonic Therapy in Ehrlich Carcinoma Solid Tumor Model
,”
PLoS One
,
8
(
10
), p.
e76207
.
43.
Yook
,
S.
,
Cai
,
Z.
,
Lu
,
Y.
,
Winnik
,
M. A.
,
Pignol
,
J. P.
, and
Reilly
,
R. M.
,
2016
, “
Intratumorally Injected 177lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy With Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer
,”
J. Nucl. Med.
,
57
(
6
), pp.
936
942
.
44.
Paul
,
A.
,
Narasimhan
,
A.
,
Kahlen
,
F. J.
, and
Das
,
S. K.
,
2014
, “
Temperature Evolution in Tissues Embedded With Large Blood Vessels During Photo-thermal Heating
,”
J. Therm. Biol.
,
41
, pp.
77
87
.
45.
Birey
,
H.
,
1978
, “
Dielectric Properties of Aluminum Oxide Films
,”
J. Appl. Phys.
,
49
(
5
), pp.
2898
2904
.
46.
Mo
,
T.-C.
,
Wang
,
H.-W.
,
Chen
,
S.-Y.
, and
Yeh
,
Y.-C.
,
2008
, “
Synthesis and Dielectric Properties of Polyaniline/Titanium Dioxide Nanocomposites
,”
Ceram. Int.
,
34
(
7
), pp.
1767
1771
.
47.
Hutcheon
,
R.
,
de Jong
,
M.
,
Adams
,
F.
,
Wood
,
G.
,
McGregor
,
J.
, and
Smith
,
B.
,
1992
, “
A System for Rapid Measurements of RF and Microwave Properties up to 1400c. Part 2: Description of Apparatus, Data Collection Techniques and Measurements on Selected Materials
,”
J. Microwave Power Electromagn. Energy
,
27
(
2
), pp.
93
102
.
48.
Rossmanna
,
C.
, and
Haemmerich
,
D.
,
2014
, “
Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures
,”
Crit. Rev. Biomed. Eng.
,
42
(
6
), pp.
467
492
.
49.
Yang
,
H.
, and
Gunasekaran
,
S.
,
2004
, “
Comparison of Temperature Distribution in Model Food Cylinders Based on Maxwell’s Equations and Lambert’s Law During Pulsed Microwave Heating
,”
J. Food Eng.
,
64
(
4
), pp.
445
453
.
50.
COMSOLMultiphysics
,
2012
,
RF Module Users Guide v4.3
,
Burlington, MA
.
51.
Wang
,
X.
,
Gao
,
X.
, and
Liu
,
J.
,
2010
, “
Monte-Carlo Simulation on Gold Nanoshells Enhanced Laser Interstitial Thermal Therapy on Target Tumor
,”
J. Comput. Theor. Nanosci.
,
7
(
6
), pp.
1025
1031
.
52.
Prosetya
,
H.
, and
Datta
,
A.
,
1991
, “
Batch Microwave Heating of Liquids: An Experimental Study
,”
J. Microwave Power Electromagn. Energy
,
26
(
4
), pp.
215
226
.
53.
Pitchai
,
K.
,
Chen
,
J.
,
Birla
,
S.
,
Jones
,
D.
,
Gonzalez
,
R.
, and
Subbiah
,
J.
,
2015
, “
Multiphysics Modeling of Microwave Heating of a Frozen Heterogeneous Meal Rotating on a Turntable
,”
J. Food Sci.
,
80
(
12
), pp.
2803
2814
.
54.
Chu
,
L.
,
Qin
,
Z.
,
Yang
,
J.
, and
Li
,
X.
,
2015
, “
Anatase TiO2 Nanoparticles With Exposed 001 Facets for Efficient Dye-Sensitized Solar Cells
,”
Sci. Rep.
,
5
(
1
), p.
12143
.
55.
Li
,
J.
, and
Xu
,
D.
,
2010
, “
Tetragonal Faceted-Nanorods of Anatase TiO2 Single Crystals With a Large Percentage of Active 100 Facets
,”
Chem. Commun.
,
46
(
13
), pp.
2301
2303
.
56.
Fisher
,
J.
, and
Egerton
,
T. A.
,
2001
, “Titanium Compounds, Inorganic,”
Kirk-Othmer Encyclopedia of Chemical Technology
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
57.
Kubaschewski
,
O.
, and
Komarek
,
K.
,
1983
, “
Titanium: Physico-chemical Properties of Its Compounds and Alloys
.”
International Atomic Energy Agency, Atomic Energy Review Series, Special Issue 9, International Atomic Energy Agency, Vienna
.
58.
Paul
,
A.
, and
Paul
,
A.
,
2020
, “
In vitro Thermal Assessment of Vascularized Tissue Phantom in Presence of Gold Nanorods During Photo-thermal Therapy
,”
ASME. J. Heat Transfer
,
142
(
10
), p.
101201
.
59.
Dhar
,
P.
,
Paul
,
A.
,
Narasimhan
,
A.
, and
Das
,
S. K.
,
2016
, “
Analytical Prediction of Subsurface Thermal History in Translucent Tissue Phantoms During Plasmonic Photothermotherapy (PPTT)
,”
J. Therm. Biol.
,
62
, pp.
143
149
.
You do not currently have access to this content.