Abstract

This study investigates the accuracy of computational fluid dynamics (CFD) models to predict heat transfer in turbulent separated flows at low Reynolds numbers. This article will focus on flow in a staggered tube bank, while its companion articular will focus on a square prism (cylinder) in cross flow. Experimental data for both local heat transfer and velocity profiles are available for these cases and have been used extensively in the literature to evaluate various CFD methods. Six unsteady models were used and the results show that the unsteady shear stress transport (SST) model provided good overall accuracy relative to the mean Nusselt number for both cases. However, the SST model failed to accurately predict local variations. The partially averaged Navier–Stokes (PANS) variant of the SST model did show a marked improvement over the baseline SST model. The dynamic Smagorinsky large eddy simulation (LES) showed a much-improved fidelity to the local Nusselt number but unpredicted the actual values. The computational cost for the LES model was significant and it was found that the computationally expensive models with higher degrees of resolved turbulence did not necessarily return better results. Finally, the pressure drop results for the six models were scaled to predict the mean Nusselt number with the generalized Leveque method and were found to be very accurate. This method should prove useful to predict heat transfer performance with computationally less expensive cold flow results.

References

1.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries La Canada
,
CA
.
2.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science & Business Media
.
3.
Martin
,
H.
,
2002
, “
The Generalized Lévêque Equation and Its Practical Use for the Prediction of Heat and Mass Transfer Rates From Pressure Drop
,”
Chem. Eng. Sci.
,
57
(
16
), pp.
3217
3223
.
4.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2012
,
Convective Heat and Mass Transfer
,
McGraw-Hill Higher Education
,
New York
.
5.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
John Wiley & Sons
,
New York
.
6.
John
,
D.
, and
Anderson
,
J.
,
Computational Fluid Dynamics: The Basics With Applications
,
McGraw-Hill
,
New York
.
7.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
8.
Sagaut
,
P.
,
Deck
,
S.
, and
Terracol
,
M.
,
2013
,
Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines
,
World Scientific
,
Singapore
.
9.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
635
.
10.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.
11.
Ridluan
,
A.
, and
Tokuhiro
,
A.
,
2008
, “
Benchmark Simulation of Turbulent Flow Through a Staggered Tube Bundle to Support CFD as a Reactor Design Tool. Part II: URANS CFD Simulation
,”
J. Nucl. Sci. Technol.
,
45
(
12
), pp.
1305
1315
.
12.
Ridluan
,
A.
, and
Tokuhiro
,
A.
,
2008
, “
Benchmark Simulation of Turbulent Flow Through a Staggered Tube Bundle to Support CFD as a Reactor Design Tool. Part I: SRANS CFD Simulation
,”
J. Nucl. Sci. Technol.
,
45
(
12
), pp.
1293
1304
.
13.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat Mass Transfer
,
4
(
1
).
14.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow, Turbulence Combust.
,
85
(
1
), pp.
113
138
.
15.
ANSYS
,
I.
,
2015
,
ANSYS FLUENT Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
16.
Ranjan
,
P.
, and
Dewan
,
A.
,
2015
, “
Partially Averaged Navier Stokes Simulation of Turbulent Heat Transfer From a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
89
(
10
), pp.
251
266
.
17.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2014
, “
A Partially-Averaged Navier–Stokes Model for the Simulation of Turbulent Swirling Flow With Vortex Breakdown
,”
Int. J. Heat Fluid Flow
,
50
(
12
), pp.
402
416
.
18.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schutze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-Shear Stress Transport Model
,”
Flow, Turbulence Combust.
,
88
(
3
), pp.
431
449
.
19.
Launder
,
B. E.
, and
Kato
,
M.
,
1993
, “
Modelling Flow-Induced Oscillations in Turbulent Flow Around a Square Cylinder
,”
Proceedings of the Fluids Engineering Conference
,
Washington, DC
,
June 20–24
, pp.
189
199
.
20.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-Turbulence Models for Aerodynamic Flows
,”
AIAA Paper
,
2906
, p.
1993
.
21.
Girimaji
,
S.
,
2005
, “
Partially-averaged Navier-Stokes model for turbulence: Implementation and validation
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, pp.
12887
12900
.
22.
Girimaji
,
S. S.
,
2006
, “
Partially-Averaged Navier-Stokes Model for Turbulence: A Reynolds-Averaged Navier-Stokes to Direct Numerical Simulation Bridging Method
,”
J. Appl. Mech.
,
73
(
3
), pp.
413
421
.
23.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.
24.
Zukauskas
,
A.
, and
Ulinskas
,
R.
,
1988
,
Heat Transfer in Tube Banks in Crossflow
,
Springer
,
Verlag Berlin Heidelberg
.
25.
Zukauskas
,
A.
,
Ulinskas
,
R.
, and
Daunoras
,
P.
,
1985
, “
Influence of Surface Roughness on the Heat Transfer and Drag of Tube Banks in Crossflow
,”
Heat Technol.
,
3
(
2
), pp.
1
46
.
26.
Pierson
,
O. L.
,
1937
, “
Experimental Investigation of the Influence of Tube Arrangement on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Am. Soc. Mech. Eng.—Trans.
,
59
(
7
), pp.
563
572
.
27.
Ishigai
,
S.
, and
Nishikawa
,
E.
,
1975
, “
Experimental Study of Structure of Gas Flow in Tube Banks With Tube Axes Normal to Flow—2. On the Structure of Gas Flow in Single-Column, Single-Row, and Double-Rows Tube Banks
,”
Bull. JSME
,
18
(
119
), pp.
528
535
.
28.
Paul
,
S. S.
,
Ormiston
,
S. J.
, and
Tachie
,
M. F.
,
2008
, “
Experimental and Numerical Investigation of Turbulent Cross-Flow in a Staggered Tube Bundle
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
387
414
.
29.
Scholten
,
J. W.
, and
Murray
,
D. B.
,
1998
, “
Heat Transfer and Velocity Fluctuations in a Staggered Tube Array
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
233
244
.
30.
Dittus
,
W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. California—Publ. Eng.
,
2
(
13
), pp.
443
461
.
31.
Gaddis
,
E. S.
, and
Gnielinski
,
V.
,
1985
, “
Pressure Drop in Cross Flow Across Tube Bundles
,”
Int. Chem. Eng.
,
25
(
1
), pp.
1
15
.
32.
Meyer
,
K. E.
,
1994
,
Experimental and Numerical Investigation of Turbulent Flow and Transfer in Staggered Tube Bundles
,
Technical University of Denmark (DTU)
,
Kongens Lyngby, Denmark
.
33.
Kelemenis
,
C. I.
, and
Turner
,
J. T.
, “
Simultaneous Measurement of Velocity and Temperature Fluctuations in a Cross-Flow Tube Bundle
,”
Proceedings of Fifth International Conference on Laser Anemometry
,
Aug. 23–27, 1993
(
Publ. by Society of Photo-Optical Instrumentation Engineers
), pp.
649
656
.
34.
Buyruk
,
E.
,
1999
, “
Heat Transfer and Flow Structures Around Circular Cylinders in Cross-Flow
,”
Turkish J. Eng. Environ. Sci.
,
23
(
5
), pp.
299
315
.
35.
Meyer
,
K. E.
, “
Local Heat Transfer From a Tube in a Staggered Tube Bundle
,”
Proceedings of the Second Baltic Heat Transfer Conference
,
Aug. 21–23, 1995
(
Computational Mechanics Publ.
), pp.
289
298
.
36.
Simonin
,
O.
, and
Barcouda
,
M.
,
1988
, “
Measurements and Prediction of Turbulent Flow Entering a Staggered Tube Bundle
,”
Proceedings of 4th International Symposium on Applications of Laser Anemometry to Fluid Mechanics
,
Lisbon, Portugal
.
37.
European Research Community on Flow, Turbulence and Combustion
,
1995
, http://cfd.mace.manchester.ac.uk/ercoftac/doku.phphttp://cfd.mace.manchester.ac.uk/ercoftac/doku.php.
38.
Johnson
,
R. W.
,
2005
,
Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design
,
Idaho National Laboratory
,
Idaho Falls, ID
.
39.
Minelli
,
G.
,
Krajnović
,
S.
, and
Basara
,
B.
,
2017
, “
LES and PANS of Turbulent Flow Through a Staggered Tube Bundle
,”
ASME 2017 Fluids Engineering Division Summer Meeting
,
Waikoloa, HI
,
July 30–Aug. 3
, p.
V01BT12A009
.
40.
Benhamadouche
,
S.
, and
Laurence
,
D.
,
2003
, “
LES, Coarse LES, and Transient RANS Comparisons on the Flow Across a Tube Bundle
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
470
479
.
41.
Moulinec
,
C.
,
Pourquié
,
M. J. B. M.
,
Boersma
,
B. J.
,
Buchal
,
T.
, and
Nieuwstadt
,
F. T. M.
,
2004
, “
Direct Numerical Simulation on a Cartesian Mesh of the Flow Through a Tube Bundle
,”
Int. J. Comput. Fluid Dyn.
,
18
(
1
), pp.
1
14
.
42.
Rollet-Miet
,
P.
,
Laurence
,
D.
, and
Ferziger
,
J.
,
1999
, “
LES and RANS of Turbulent Flow in Tube Bundles
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
241
254
.
43.
Ramezanpour
,
A.
,
Mirzaee
,
I.
,
Rahmani
,
R.
, and
Shirvani
,
H.
,
2006
, “
Numerical Study of Staggered Tube Bundle in Turbulent Cross Flow for an Optimum Arrangement
,”
Int. J. Heat Exchangers
,
7
(
1
), pp.
37
56
.
44.
Ramezanpour
,
A.
,
Rahmani
,
R.
,
Shirvani
,
H.
, and
Mirzaee
,
I.
,
2005
, “
Three Dimensional Numerical Modelling of Staggered Tube Bundle Turbulent Crossflow in Duct
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference
,
San Francisco, CA
,
July 17–22
, American Society of Mechanical Engineers, pp.
609
617
.
45.
ANSYS
,
I.
,
2015
,
ANSYS FLUENT UDF Manual
,
ANSYS, Inc.
,
Canonsburg, PA
.
46.
Egorov
,
Y.
,
Menter
,
F. R.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
Flow Turbulence Combust.
,
85
(
1
), pp.
139
165
.
You do not currently have access to this content.