Abstract

The present paper deals with the forced convection of Al2O3/water and TiO2/water nanofluids with the variation of pH and addition of surfactant in nanofluids. The aim of this study is to investigate the effect of suspension stability on the heat transfer and pressure drop characteristics of nanofluids. The present experimental setup is same as used by our earlier paper (Khurana, D., and Subudhi, S., 2019, “Forced Convection of Al2O3/Water Nanofluids With Simple and Modified Spiral Tape Inserts,” Heat Mass Transfer, 55(6), pp. 1–13). The suspension stability of nanofluids is improved by varying pH of nanofluids. The pH in this study is varied from 3.5 ± 0.2 to 12.5 ± 0.2. Addition of surfactants is employed to improve the suspension stability of nanofluids. The sodium dodecyl sulfate (SDS) surfactant of 0.05 wt% is used to increase the stability of nanofluids in the present study. It is observed that by increasing the suspension stability with the variation of pH and addition of surfactant, the heat transfer characteristics have improved appreciably. The maximum enhancement in heat transfer is obtained with TiO2/water nanofluids at a particle concentration of 0.1 vol% and a pH of 3.5 ± 0.2.

References

1.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2011
, “
Experimental Study of Mixed Convection With Water–Al2O3 Nanofluid in Inclined Tube With Uniform Wall Heat Flux
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
403
410
. 10.1016/j.ijthermalsci.2010.03.016
2.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Bechec
,
A. L.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3–Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
401
411
. 10.1016/j.ijthermalsci.2008.10.007
3.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Heat Transfer Enhancements of Low Volume Concentration Al2O3 Nanofluid and With Longitudinal Strip Inserts in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4280
4286
. 10.1016/j.ijheatmasstransfer.2010.05.056
4.
Maiga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
. 10.1016/j.ijheatfluidflow.2005.02.004
5.
Fotukian
,
S. M.
, and
Esfahany
,
M. N.
,
2010
, “
Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid Inside a Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
214
219
. 10.1016/j.icheatmasstransfer.2009.10.003
6.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
,
2005
, “
Heat Transfer Enhancement in Nano-Fluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2673
2683
. 10.1016/j.ijheatmasstransfer.2005.01.023
7.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
. 10.1063/1.1341218
8.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
,
2002
, “
Thermal Conductivity of Suspensiomechanism of Heat Flow vs Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
,
23
(
2
), pp.
571
580
. 10.1023/A:1015121805842
9.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
617
623
. 10.1115/1.2712475
10.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
. 10.1063/1.1756684
11.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
. 10.1007/s11051-004-3170-5
12.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
. 10.1103/PhysRevLett.94.025901
13.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspension of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
. 10.1016/S0017-9310(01)00175-2
14.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
,
2006
, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
,
88
(
9
), p.
093116
. 10.1063/1.2179118
15.
Nie
,
C.
,
Marlow
,
W. H.
, and
Hassan
,
Y. A.
,
2008
, “
Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1342
1348
. 10.1016/j.ijheatmasstransfer.2007.11.034
16.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2004
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton–Crosser Model
,”
J. Nanopart. Res.
,
6
(
4
), pp.
355
361
. 10.1007/s11051-004-2601-7
17.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
,
2005
, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle–Fluid Mixture
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2926
2932
. 10.1016/j.ijheatmasstransfer.2004.10.040
18.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
. 10.1007/s11051-005-9018-9
19.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2006
, “
Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Proceedings of the IEEE Conference on Emerging Technologies-Nanoelectronics
,
Singapore
,
Jan. 10–13
, pp.
155
158
.
20.
Shukla
,
R. K.
, and
Dhir
,
V. K.
,
2005
, “
Numerical Study of the Effective Thermal Conductivity of Nanofluids
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
San Francisco, CA
,
July 17–22
, pp.
1
5
.
21.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2004
, “
Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4277
4284
. 10.1016/j.ijheatmasstransfer.2004.05.016
22.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
. 10.1016/j.ijheatmasstransfer.2007.10.017
23.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
,
2006
, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
89
(
2
), p.
023123
. 10.1063/1.2221905
24.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
), pp.
1529
1534
. 10.1021/nl060992s
25.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
,
2008
, “
Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids
,”
Nanotechnology
,
19
(
30
), p.
305706
. 10.1088/0957-4484/19/30/305706
26.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
. 10.1002/aic.690490420
27.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
. 10.1016/j.ijheatmasstransfer.2008.06.032
28.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
29.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1111
1118
. 10.1016/j.icheatmasstransfer.2005.05.014
30.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
. 10.1016/S0142-727X(99)00067-3
31.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
. 10.1016/j.ijheatfluidflow.2006.05.001
32.
Fotukian
,
S. M.
, and
Esfahany
,
M. N.
,
2010
, “
Experimental Investigation of Turbulent Convective Heat Transfer of Dilute γ-Al2O3/Water Nanofluid Inside a Circular Tube
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
606
612
. 10.1016/j.ijheatfluidflow.2010.02.020
33.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
A. C.
,
2010
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Laminar Flow With Wire Coil Inserts
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
122
130
. 10.1016/j.expthermflusci.2009.10.001
34.
Choudhury
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
. 10.1080/17458080.2017.1285445
35.
Zawrah
,
M. F.
,
Khattab
,
R. M.
, and
Girgis
,
L. G.
,
2016
, “
Stability and Electrical Conductivity of Water-Based Al2O3 Nanofluids for Different Applications
,”
HBRC J.
,
12
(
3
), pp.
227
234
. 10.1016/j.hbrcj.2014.12.001
36.
Samal
,
S.
,
Satpati
,
B.
, and
Chaira
,
D.
,
2010
, “
Production and Dispersion Stability of Ultrafine Al–Cu Alloy Powder in Base Fluid
,”
J. Alloys Compd.
,
504S
(
Supplement 1
), pp.
S389
S394
. 10.1016/j.jallcom.2010.03.223
37.
Khurana
,
D.
, and
Subudhi
,
S.
,
2019
, “
Forced Convection of Al2O3/Water Nanofluids With Simple and Modified Spiral Tape Inserts
,”
Heat Mass Transfer
,
55
(
6
), pp.
1
13
. 10.1007/s00231-019-02629-7
38.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4051
4068
. 10.1016/j.ijheatmasstransfer.2011.04.014
39.
Mital
,
G. S.
, and
Manoj
,
T.
,
2011
, “
A Review of TiO2 Nanoparticles
,”
Chin. Sci. Bull.
,
56
(
16
), pp.
1639
1657
. 10.1007/s11434-011-4476-1
40.
Arani
,
A. A. A.
, and
Amani
,
J.
,
2012
, “
Experimental Study on the Effect of TiO2–Water Nanofluid on Heat Transfer and Pressure Drop
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
107
115
. 10.1016/j.expthermflusci.2012.04.017
You do not currently have access to this content.