Abstract

Phase change of paraffin in a hemicylindrical storage unit is investigated numerically and experimentally. The predicted findings are confirmed by comparison with the experimental results of the present work. Good agreements are achieved between the two approaches. The influence of the hot wall temperatures of 80, 85, and 90 °C is examined. The conduction mechanism is dominant only during the initial periods of the charging process, while buoyancy-driven convection is prevalent at later stages. The charging rate and stored energy both increased, whereas the melting time is reduced as the wall temperature increases. The Nusselt number increases sharply at the initial period of the fusion process, followed by a decaying trend with time until it stabilizes when the charging process is terminated. Increasing the cell diameter from 20 to 40 cm will raise the melting time by 300% for the wall temperature of 90 °C. In addition, under the same operating conditions, the melting of the phase change material (PCM) inside the hemicylindrical cell is faster than that observed in a rectangular one with equivalent volume. Savings in melting time due to using hemicylindrical container instead of a rectangular one of equivalent PCM volume are about 7.1%, 8.3%, and 11.7% for hot wall temperatures of 65, 75, and 85 °C, respectively.

References

1.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renew. Sustain. Energy Rev.
,
13
(
2
), pp.
318
345
. 10.1016/j.rser.2007.10.005
2.
Panayiotou
,
G. P.
,
Kalogirou
,
S. A.
, and
Tassou
,
S. A.
,
2016
, “
Evaluation of the Application of Phase Change Materials (PCM) on the Envelope of a Typical Dwelling in the Mediterranean Region
,”
Renew. Energy
,
97
, pp.
24
32
. 10.1016/j.renene.2016.05.043
3.
Jaguemont
,
J.
,
Omar
,
N.
,
Bossche
,
P. V.
, and
Mierlo
,
J.
,
2018
, “
Phase-Change Materials (PCM) for Automotive Applications: A Review
,”
Appl. Therm. Eng.
,
132
, pp.
308
320
. 10.1016/j.applthermaleng.2017.12.097
4.
Ahmed
,
N.
,
Elfeky
,
K. E.
,
Lu
,
L.
, and
Wang
,
Q. W.
,
2020
, “
Thermal Performance Analysis of Thermocline Combined Sensible-Latent Heat Storage System Using Cascaded-Layered PCM Designs for Medium Temperature Applications
,”
Renew. Energy
,
152
, pp.
684
697
. 10.1016/j.renene.2020.01.073
5.
Dhaidan
,
N. S.
, and
Khodadadi
,
J. M.
,
2017
, “
Improved Performance of Latent Heat Energy Storage Systems Utilizing High Thermal Conductivity Fins: A Review
,”
J. Renew. Sustain. Energy
,
9
(
3
), p.
034103
. 10.1063/1.4989738
6.
Yang
,
X.
,
Wei
,
P.
,
Wang
,
X.
, and
He
,
Y.
,
2020
, “
Gradient Design of Pore Parameters on the Melting Process in a Thermal Energy Storage Unit Filled With Open-Cell Metal Foam
,”
Appl. Energy
,
268
, p.
115019
. 10.1016/j.apenergy.2020.115019
7.
Jebasingh
,
E.
, and
Arasu
,
V.
,
2020
, “
A Comprehensive Review on Latent Heat and Thermal Conductivity of Nanoparticle Dispersed Phase Change Material for Low-Temperature Applications
,”
Energy Storage Mater.
,
24
, pp.
52
74
. 10.1016/j.ensm.2019.07.031
8.
Dhaidan
,
N. S.
, and
Khodadadi
,
J. M.
,
2015
, “
Melting and Convection of Phase Change Materials in Different Shape Containers: A Review
,”
Renew. Sustain. Energy Rev.
,
43
, pp.
449
477
. 10.1016/j.rser.2014.11.017
9.
Chen
,
C. R.
,
Sharma
,
A.
,
Tyagi
,
S. K.
, and
Buddhi
,
D.
,
2008
, “
Numerical Heat Transfer Studies of PCMs Used in a Box-Type Solar Cooker
,”
Renew. Energy
,
33
(
5
), pp.
1121
1129
. 10.1016/j.renene.2007.06.014
10.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4082
4091
. 10.1016/j.ijheatmasstransfer.2010.05.028
11.
Sharifi
,
N.
,
Robak
,
C. W.
,
Bergman
,
T. L.
, and
Faghri
,
A.
,
2013
, “
Three-Dimensional PCM Melting in a Vertical Cylindrical Enclosure Including the Effects of Tilting
,”
Int. J. Heat Mass Transfer
,
65
, pp.
798
806
. 10.1016/j.ijheatmasstransfer.2013.06.070
12.
Shokouhmand
,
H.
, and
Kamkari
,
B.
,
2013
, “
Experimental Investigation on Melting Heat Transfer Characteristics of Lauric Acid in a Rectangular Thermal Storage Unit
,”
Exp. Therm. Fluid. Sci.
,
50
, pp.
201
212
. 10.1016/j.expthermflusci.2013.06.010
13.
Kant
,
K.
,
Shukla
,
A.
, and
Sharma
,
A.
,
2016
, “
Performance Evaluation of Fatty Acids as Phase Change Material for Thermal Energy Storage
,”
J. Energy Storage
,
6
, pp.
153
162
. 10.1016/j.est.2016.04.002
14.
Sun
,
X.
,
Chu
,
Y.
,
Mo
,
Y.
,
Fan
,
S.
, and
Liao
,
S.
,
2018
, “
Experimental Investigations on the Heat Transfer of Melting Phase Change Material (PCM)
,”
Energy Procedia
,
152
, pp.
186
191
. 10.1016/j.egypro.2018.09.079
15.
Pan
,
C.
,
Charles
,
J.
,
Vermaak
,
N.
,
Romero
,
C.
,
Neti
,
S.
,
Zheng
,
Y.
,
Chen
,
C.
, and
Bonner
,
R.
,
2018
, “
Experimental, Numerical and Analytic Study of Unconstrained Melting in a Vertical Cylinder With a Focus on Mushy Region Effects
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1015
1024
. 10.1016/j.ijheatmasstransfer.2018.04.009
16.
Yadav
,
A.
, and
Samir
,
S.
,
2019
, “
Experimental and Numerical Investigation of Spatiotemporal Characteristics of Thermal Energy Storage System in a Rectangular Enclosure
,”
J. Energy Storage
,
21
, pp.
405
417
. 10.1016/j.est.2018.12.005
17.
Bechiri
,
M.
, and
Mansouri
,
K.
,
2019
, “
Study of Heat and Fluid Flow During Melting of PCM Inside Vertical Cylindrical Tube
,”
Int. J. Therm. Sci.
,
135
, pp.
235
246
. 10.1016/j.ijthermalsci.2018.09.017
18.
Nimrodi
,
Y.
,
Kozak
,
Y.
,
Portnikov
,
D.
, and
Ziskind
,
G.
,
2020
, “
Melting in a Vertical Pipe Due to Asymmetric Heating
,”
Renew. Energy
,
152
, pp.
179
188
. 10.1016/j.renene.2020.01.034
19.
Dhaidan
,
N. S.
,
2017
, “
Melting Phase Change of n-Eicosane Inside Triangular Cavity of Two Orientations
,”
J. Renew. Sustain. Energy
,
9
(
5
), p.
054101
. 10.1063/1.5007894
20.
Rizan
,
M. Z. M.
,
Tan
,
F. L.
, and
Tso
,
C. P.
,
2012
, “
An Experimental Study of n-Octadecane Melting Inside a Sphere Subjected to Constant Heat Rate at Surface
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1624
1630
. 10.1016/j.icheatmasstransfer.2012.08.003
21.
Yang
,
L.
,
Zhang
,
X.
, and
Xu
,
G.
,
2014
, “
Thermal Performance of a Solar Storage Packed Bed Using Spherical Capsules Filled With PCM Having Different Melting Points
,”
Energy Build.
,
68 (Part B)
, pp.
639
646
. 10.1016/j.enbuild.2013.09.045
22.
Solomon
,
L.
,
Elmozughi
,
A. F.
,
Oztekin
,
A.
, and
Neti
,
S.
,
2015
, “
Effect of Internal Void Placement on the Heat Transfer Performance—Encapsulated Phase Change Material for Energy Storage
,”
Renew. Energy
,
78
, pp.
438
447
. 10.1016/j.renene.2015.01.035
23.
Aadmi
,
M.
,
Karkri
,
M.
, and
El Hammouti
,
M.
,
2015
, “
Heat Transfer Characteristics of Thermal Energy Storage for PCM (Phase Change Material) Melting in Horizontal Tube: Numerical and Experimental Investigations
,”
Energy
,
85
, pp.
339
352
. 10.1016/j.energy.2015.03.085
24.
Hlimi
,
M.
,
Hamdaoui
,
S.
,
Mahdaoui
,
M.
,
Kousksou
,
T.
,
Ait Msaad
,
A.
, and
Jamil
,
A.
,
2016
, “
Melting Inside a Horizontal Cylindrical Capsule
,”
Case Stud. Therm. Eng.
,
8
, pp.
359
369
. 10.1016/j.csite.2016.10.001
25.
Sattari
,
H.
,
Mohebbi
,
A.
,
Afsahi
,
M. M.
, and
Azimi
,
A. Y.
,
2017
, “
CFD Simulation of Melting Process of Phase Change Materials (PCMs) in a Spherical Capsule
,”
Int. J. Refrig.
,
73
, pp.
209
218
. 10.1016/j.ijrefrig.2016.09.007
26.
Bechiri
,
M.
,
Mansouri
,
K.
, and
Saleem
,
S.
,
2020
, “
Study of Heat Sink Effects During Melting of Constrained Phase Change Material Inside a Spherical Enclosure
,”
J. Energy Storage
,
27
, p.
101151
. 10.1016/j.est.2019.101151
27.
Dhaidan
,
N. S.
,
2020
, “
Thermal Performance of Constrained Melting of PCM Inside an Elliptical Capsule of Two Orientations
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
10.1007/s40997-020-00345-w
28.
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
,
Sedighi
,
K.
, and
Rahimi
,
M.
,
2012
, “
A Combined Experimental and Computational Study on the Melting Behavior of a Medium Temperature Phase Change Storage Material Inside Shell and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1416
1424
. 10.1016/j.icheatmasstransfer.2012.07.028
29.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Experimental Study of PCM Melting in Triplex Tube Thermal Energy Storage for Liquid Desiccant Air Conditioning System
,”
Energy Build.
,
60
, pp.
270
279
. 10.1016/j.enbuild.2013.01.031
30.
Agarwal
,
A.
, and
Sarviya
,
R. M.
,
2016
, “
An Experimental Investigation of Shell and Tube Latent Heat Storage for Solar Dryer Using Paraffin Wax as Heat Storage Material
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
619
631
. 10.1016/j.jestch.2015.09.014
31.
Ebrahimi
,
A.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2019
, “
Melting Process Investigation of Phase Change Materials in a Shell and Tube Heat Exchanger Enhanced With Heat Pipe
,”
Renew. Energy
,
138
, pp.
378
394
. 10.1016/j.renene.2019.01.110
32.
Dukhan
,
W. A.
,
Dhaidan
,
N. S.
, and
Al-Hattab
,
T. A.
,
2019
, “
Experimental Investigation of the Horizontal Double Pipe Heat Exchanger Utilized Phase Change Material
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
671
, p.
012148
. 10.1088/1757-899X/671/1/012148
33.
Sadeghi
,
H. M.
,
Babayan
,
M.
, and
Chamkha
,
A.
,
2020
, “
Investigation of Using Multi-Layer PCMs in the Tubular Heat Exchanger With Periodic Heat Transfer Boundary Condition
,”
Int. J. Heat Mass Transfer
,
147
, p.
118970
. 10.1016/j.ijheatmasstransfer.2019.118970
34.
Tan
,
F. L.
,
2008
, “
Constrained and Unconstrained Melting Inside a Sphere
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
466
475
. 10.1016/j.icheatmasstransfer.2007.09.008
35.
Dhaidan
,
N. S.
, and
Khalaf
,
A. F.
,
2020
, “
Experimental Evaluation of the Melting Behaviors of Paraffin Within a Hemicylindrical Storage Cell
,”
Int. Commun. Heat Mass Transfer
,
111
, p.
104476
. 10.1016/j.icheatmasstransfer.2020.104476
You do not currently have access to this content.