Abstract

In this research, thermal energy discharging performance of metal foam/paraffin composite phase change material (MFPC) is investigated at pore scale through direct simulation. A thermal transport model is first developed for heat discharging of MFPC by incorporating the involved effects of solidification phase transition, foam structure, and paraffin volume shrinkage. With this model, the detailed phase interface evolutions, temperature fields, and heat flux distributions of MFPC are numerically obtained and analyzed. It is found that once phase change heat discharging of MFPC begins, the solidification front of paraffin quickly forms and extends along the foam skeleton, which results in remarkably extended thermal transport interface to release latent heat as well as improved spatial synergy in phase change. The effect of local thermal nonequilibrium between porous metal foam and paraffin proves to be intrinsic and significant, providing an efficient inner driving force for enhancing latent heat discharging within MFPC. The overall energy discharging performance of MFPC unit is remarkably improved as compared with pure paraffin unit, evidenced by a large enhancement in latent heat release rate (more than three times) with only small reduction (2.6%) in heat capacity. Simultaneously, it is found that the paraffin-air interface for MFPC unit descends much faster than that for pure paraffin unit due to accelerated volume shrinkage of solidified paraffin within metal foam, resulting in a threefold enhancement in thermally driven dynamic response rate. This study can help more deeply understanding the energy discharging performance of MFPC and providing fundamental guidance for its application in miniaturized thermal systems.

References

1.
Gulfam
,
R.
,
Zhang
,
P.
, and
Meng
,
Z.
,
2019
, “
Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review
,”
Appl. Energy
,
238
, pp.
582
611
. 10.1016/j.apenergy.2019.01.114
2.
Abdulrahman
,
R. S.
,
Ibrahim
,
F. A.
, and
Dakhil
,
S. F.
,
2019
, “
Development of Paraffin Wax as Phase Change Material Based Latent Heat Storage in Heat Exchanger
,”
Appl. Therm. Eng.
,
150
, pp.
193
199
. 10.1016/j.applthermaleng.2018.12.149
3.
Yadav
,
A.
, and
Samir
,
S.
,
2019
, “
Experimental and Numerical Investigation of Spatiotemporal Characteristics of Thermal Energy Storage System in a Rectangular Enclosure
,”
J. Energy Storage
,
21
, pp.
405
417
. 10.1016/j.est.2018.12.005
4.
Drissi
,
S.
,
Ling
,
T.-C.
, and
Mo
,
K. H.
,
2019
, “
Thermal Efficiency and Durability Performances of Paraffinic Phase Change Materials With Enhanced Thermal Conductivity—A Review
,”
Thermochim. Acta
,
673
, pp.
198
210
. 10.1016/j.tca.2019.01.020
5.
Bose
,
P.
, and
Amirtham
,
V. A.
,
2016
, “
A Review on Thermal Conductivity Enhancement of Paraffinwax as Latent Heat Energy Storage Material
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
81
100
. 10.1016/j.rser.2016.06.071
6.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
. 10.1016/j.ijheatmasstransfer.2013.02.050
7.
Lafdi
,
K.
,
Mesalhy
,
O. M.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
. 10.1063/1.2802183
8.
Joshi
,
V.
, and
Rathod
,
M. K.
,
2019
, “
Thermal Transport Augmentation in Latent Heat Thermal Energy Storage System by Partially Filled Metal Foam: A Novel Configuration
,”
J. Energy Storage
,
22
, pp.
270
282
. 10.1016/j.est.2019.02.019
9.
Bubbico
,
R.
,
D'Annibale
,
F.
,
Mazzarotta
,
B.
, and
Menale
,
C.
,
2018
, “
Analysis of Passive Temperature Control Systems Using Phase Change Materials for Application to Secondary Batteries Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061009
. 10.1115/1.4040643
10.
Saghir
,
M. Z.
,
Welsford
,
C.
,
Thanapathy
,
P.
,
Bayomy
,
A. M.
, and
Delisle
,
C.
,
2019
, “
Experimental Measurements and Numerical Computation of Nano Heat Transfer Enhancement Inside a Porous Material
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011003
. 10.1115/1.4041936
11.
Siahpush
,
A.
,
O’Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082301
. 10.1115/1.2928010
12.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
. 10.1016/j.solener.2010.04.022
13.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Experimental Investigations on Thermal Performance Enhancement and Effect of Orientation on Porous Matrix Filled PCM Based Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
46
(
0
), pp.
27
30
. 10.1016/j.icheatmasstransfer.2013.05.018
14.
Martinelli
,
M.
,
Bentivoglio
,
F.
,
Caron-Soupart
,
A.
,
Couturier
,
R.
,
Fourmigue
,
J.-F.
, and
Marty
,
P.
,
2016
, “
Experimental Study of a Phase Change Thermal Energy Storage With Copper Foam
,”
Appl. Therm. Eng.
,
101
, pp.
247
261
. 10.1016/j.applthermaleng.2016.02.095
15.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Solidification Enhancement in a Triplex-Tube Latent Heat Energy Storage System Using Nanoparticles-Metal Foam Combination
,”
Energy
,
126
, pp.
501
512
. 10.1016/j.energy.2017.03.060
16.
Esapour
,
M.
,
Hamzehnezhad
,
A.
,
Rabienataj Darzi
,
A. A.
, and
Jourabian
,
M.
,
2018
, “
Melting and Solidification of PCM Embedded in Porous Metal Foam in Horizontal Multi-Tube Heat Storage System
,”
Energy Convers. Manage.
,
171
, pp.
398
410
. 10.1016/j.enconman.2018.05.086
17.
Shahsavar
,
A.
,
Al-Rashed
,
A. A. A. A.
,
Entezari
,
S.
, and
Sardari
,
P. T.
,
2019
, “
Melting and Solidification Characteristics of a Double-Pipe Latent Heat Storage System With Sinusoidal Wavy Channels Embedded in a Porous Medium
,”
Energy
,
171
, pp.
751
769
. 10.1016/j.energy.2019.01.045
18.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
. 10.1016/j.ijheatmasstransfer.2015.06.088
19.
Zhang
,
P.
,
Meng
,
Z.
,
Zhu
,
H. H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
,
2017
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
, pp.
1971
1983
. 10.1016/j.apenergy.2015.10.075
20.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
. 10.1115/1.4028113
21.
Cunsolo
,
S.
,
Iasiello
,
M.
,
Oliviero
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2016
, “
Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
138
(
2
), p.
022601
. 10.1115/1.4031700
22.
Ambrosio
,
G.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer and Pressure Drop
,”
Appl. Therm. Eng.
,
103
, pp.
333
343
. 10.1016/j.applthermaleng.2016.04.085
23.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2018
, “
Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
140
(
3
), p.
032601
. 10.1115/1.4038006
24.
Banhart
,
J.
,
2006
, “
Metal Foams: Production and Stability
,”
Adv. Eng. Mater.
,
8
(
9
), pp.
781
794
. 10.1002/adem.200600071
25.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
. 10.1115/1.2227038
26.
Sundarram
,
S. S.
, and
Li
,
W.
,
2014
, “
The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
147
154
. 10.1016/j.applthermaleng.2013.11.072
27.
Bock
,
J.
, and
Jacobi
,
A. M.
,
2013
, “
Geometric Classification of Open-Cell Metal Foams Using X-Ray Micro-Computed Tomography
,”
Mater. Charact.
,
75
, pp.
35
43
. 10.1016/j.matchar.2012.10.001
28.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2010
, “
Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams
,”
Numer. Heat Transfer, Part A
,
58
(
7
), pp.
527
544
. 10.1080/10407782.2010.511987
29.
Ranut
,
P.
,
Nobile
,
E.
, and
Mancini
,
L.
,
2014
, “
High Resolution Microtomography-Based CFD Simulation of Flow and Heat Transfer in Aluminum Metal Foams
,”
Appl. Therm. Eng.
,
69
(
1
), pp.
230
240
. 10.1016/j.applthermaleng.2013.11.056
30.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2019
, “
Thermal Conduction in Open-Cell Metal Foams: Anisotropy and Representative Volume Element
,”
Int. J. Therm. Sci.
,
137
, pp.
399
409
. 10.1016/j.ijthermalsci.2018.12.002
31.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2020
, “
Anisotropic Convective Heat Transfer in Open-Cell Metal Foams: Assessment and Correlations
,”
Int. J. Heat Mass Transfer
,
154
, p.
119682
. 10.1016/j.ijheatmasstransfer.2020.119682
32.
Hu
,
X.
, and
Patnaik
,
S. S.
,
2014
, “
Modeling Phase Change Material in Micro-Foam Under Constant Temperature Condition
,”
Int. J. Heat Mass Transfer
,
68
, pp.
677
682
. 10.1016/j.ijheatmasstransfer.2013.09.054
33.
Abishek
,
S.
,
King
,
A. J. C.
,
Nadim
,
N.
, and
Mullins
,
B. J.
,
2018
, “
Effect of Microstructure on Melting in Metal-Foam/Paraffin Composite Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
127
, pp.
135
144
. 10.1016/j.ijheatmasstransfer.2018.07.054
34.
Li
,
X.
,
Ma
,
T.
,
Liu
,
J.
,
Zhang
,
H.
, and
Wang
,
Q.
,
2018
, “
Pore-Scale Investigation of Gravity Effects on Phase Change Heat Transfer Characteristics Using Lattice Boltzmann Method
,”
Appl. Energy
,
222
, pp.
92
103
. 10.1016/j.apenergy.2018.03.184
35.
Yao
,
Y.
, and
Wu
,
H.
,
2019
, “
Pore-Scale Simulation of Melting Process of Paraffin With Volume Change in High Porosity Open-Cell Metal Foam
,”
Int. J. Therm. Sci.
,
138
, pp.
322
340
. 10.1016/j.ijthermalsci.2018.12.052
36.
Wehmeyer
,
G.
,
Yabuki
,
T.
,
Monachon
,
C.
,
Wu
,
J.
, and
Dames
,
C.
,
2017
, “
Thermal Diodes, Regulators, and Switches: Physical Mechanisms and Potential Applications
,”
Appl. Phys. Rev.
,
4
(
4
), p.
041304
. 10.1063/1.5001072
37.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K. A.
,
1995
, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
,
4
(
3
), pp.
181
192
. 10.1080/10586458.1995.10504320
38.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
. 10.1016/j.ijheatfluidflow.2003.08.002
39.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2539
2550
. 10.1016/j.ijheatmasstransfer.2009.12.067
40.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
. 10.1016/S0017-9310(01)00220-4
41.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4082
4091
. 10.1016/j.ijheatmasstransfer.2010.05.028
42.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
. 10.1016/0017-9310(87)90317-6
43.
Chakraborty
,
P. R.
,
2017
, “
Enthalpy Porosity Model for Melting and Solidification of Pure-Substances With Large Difference in Phase Specific Heats
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
183
189
. 10.1016/j.icheatmasstransfer.2016.12.023
44.
Kim
,
Y.
,
Hossain
,
A.
, and
Nakamura
,
Y.
,
2013
, “
Numerical Study of Melting of a Phase Change Material (PCM) Enhanced by Deformation of a Liquid–Gas Interface
,”
Int. J. Heat Mass Transfer
,
63
, pp.
101
112
. 10.1016/j.ijheatmasstransfer.2013.03.052
45.
Yao
,
Y.
,
Wu
,
H.
,
Gao
,
Z.
, and
Liu
,
Z.
,
2019
, “
Pore-Scale Visualization and Measurement of Paraffin Solidification in High Porosity Open-Cell Copper Foam
,”
Int. J. Therm. Sci.
,
135
, pp.
94
103
. 10.1016/j.ijthermalsci.2018.09.007
You do not currently have access to this content.