Abstract

The paper industry uses steam to dry paper web through cylinder dryers. As steam condenses inside the dryer, the condensate is removed by means of either a stationary or a rotary siphon. However, during the siphoning process for transporting the condensate, flashing of the condensate occurs, which could cause backflow or discontinuity in the siphoning process. To resolve this flashing issue, two approaches have been employed: (a) increasing the amount of steam supplied to the cylinder to “blow-through” the stalled condensate–steam mixture and (b) reducing the back pressure by inducing “suction” through a thermocompressor from downstream. The objective of this study is to investigate and improve understanding of the flashing phenomena during condensate transport through the siphon and piping system in order to develop means to reduce the excessive steam consumption during the paper drying process. A computational fluid dynamics (CFD) simulation is performed that uses the Eulerian–Eulerian multiphase method. The steady-state case is first solved to obtain the flow field without flashing. Then, the transient method is initiated by employing evaporation and condensation model. The results show that reduction of local pressure triggers flashing; however, flashing in turn reduces local temperature and subsequently induces condensation, resulting in an alternating flashing and condensation behavior. To maintain continuity of the siphon flow, the inlet pressure fluctuates corresponding to the variation of total vapor volume ratio inside the siphon. The results will be used to modify the current siphon system design and operating practices to reduce the steam consumption.

References

1.
Karlson
,
M.
,
2000
,
Papermaking Part 2-Drying
, Fapet Oy,
Helsinki
.
2.
Krumenacker
,
R.
, and
Deutsch
,
P.
,
1999
,
Paper Machine Steam and Condensate Systems
, 5th ed.,
TAPPI Press
,
Atlanta, GA
.
3.
Reese
,
J.
,
Chaloux
,
J.
,
Kormano
,
P.
,
Reese
,
D.
, and
Wedel
,
G.
,
2016
, “Recommended Dryer Differential Pressures,” TIP 0404-31, TAPPI.
4.
Soucy
,
M.
,
2018
, “Yankee Steam System Optimization,” Yankee Operations Workshop, Tissue World, Miami.
5.
Pinhasi
,
G. A.
,
Ullmann
,
A.
, and
Dayan
,
A.
,
2005
, “
Modeling of Flashing Two-Phase Flow
,”
Rev. Chem. Eng.
,
21
(
3–4
), pp.
133
264
. 10.1515/REVCE.2005.21.3-4.133
6.
Liao
,
Y.
, and
Lucas
,
D.
,
2017
, “
Computational Modeling of Flash Boiling Flows: A Literature Survey
,”
Int. J. Heat Mass Transfer
,
111
, pp.
246
265
. 10.1016/j.ijheatmasstransfer.2017.03.121
7.
Liao
,
Y.
, and
Lucas
,
D.
,
2017
, “
Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications
,”
Energies
,
10
(
1
), p.
139
. https://doi.org/10.3390/en10010139
8.
Le
,
Q. D.
,
Mereu
,
R.
,
Besagni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2018
, “
Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
,”
ASME J. Fluid Eng.
,
140
(
10
), p.
101102
. https://doi.org/10.1115/1.4039908.
9.
Giese
,
T.
, and
Laurien
,
E.
,
2001
, “
A Thermal Based Model for Cavitation in Saturated Liquids
,”
Z. Angew. Math. Mech.
,
81
, pp.
957
958
.
10.
Giese
,
T.
, and
Laurien
,
E.
,
2002
, “
Experimental and Numerical Investigation of Gravity Driven Pipe Flow with Cavitation
,”
Proceedings of 10th International Conference on Nuclear Engineering (ICONE10)
,
Arlington, VA
,
Apr. 14–18
, pp.
15
21
. https://doi.org/10.1115/ICONE10-22026
11.
Laurine
,
E.
, and
Giese
,
T.
,
2003
, “
Exploration of the Two-Fluid Model of Two-Phase Flow Towards Boiling, Cavitation And Stratification
,”
Proceedings of the 3rd International Conference on Computational Heat and Mass Transfer
,
Banff, Canada
,
May 26–30
.
12.
Laurien
,
E.
,
2004
, “
Influence of the Model Bubble Diameter on Three-Dimensional Numerical Simulations of Thermal Cavitation in Pipe Elbows
,”
Proceedings of 3rd International Symposium on Two-Phase Flow Modelling and Experimentation
,
Pisa, Italy
,
Sept. 22–24
, pp.
2113
2120
.
13.
Maksic
,
S.
, and
Mewes
,
D.
,
2002
, “
CFD Calculation of the Flashing Flow in Pipes and Nozzles
,”
ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
,
Montreal, PQ, Canada
,
July 14–18
, pp.
511
516
. https://doi.org/10.1115/FEDSM2002-31033
14.
Shin
,
T. S.
, and
Jones
,
O. C.
,
1993
, “
Nucleation and Flashing in Nozzles—1, A Distributed Nucleation Model
,”
Int. J. Multiphase Flow
,
19
(
6
), pp.
943
964
. 10.1016/0301-9322(93)90071-2
15.
Frank
,
T.
,
2007
, “
Simulation of Flashing and Steam Condensation in Subcooled Liquid Using ANSYS CFX
,”
Proceedings of 5th Joint FZR & ANSYS Workshop: Multiphase Flows: Simulation, Experiment and Application
,
Dresden, Germany
,
Apr. 26–27
.
16.
Marsh
,
C. A.
, and
O'Mahony
,
A. P.
,
2009
, “
Three-Dimensional Modelling of Industrial Flashing Flows
,”
Prog. Comput. Fluid Dyn.
,
9
(
6/7
), pp.
393
398
. Trondheim, Norway. 10.1504/PCFD.2009.027370
17.
Blander
,
M.
, and
Katz
,
L. J.
,
1975
, “
Bubble Nucleation in Liquids
,”
AIChE J.
,
21
(
5
), pp.
833
848
. 10.1002/aic.690210502
18.
Mimouni
,
S.
,
Boucker
,
M.
,
Laviéville
,
J.
,
Guelfi
,
A.
, and
Bestion
,
D.
,
2008
, “
Modelling and Computation of Cavitation and Boiling Bubbly Flows With the NEPTUNE CFD Code
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
680
692
. 10.1016/j.nucengdes.2007.02.052
19.
Yazdani
,
M.
,
Alahyari
,
A. A.
, and
Radcliff
,
D. T.
,
2014
, “
Numerical Modeling and Validation of Supersonic Two-Phase Flow of CO2 in Converging-Diverging Nozzles
,”
ASME J. Fluid Eng.
,
136
(
1
), p.
014503
. 10.1115/1.4025647
20.
Liao
,
Y.
,
Lucas
,
D.
,
Krepper
,
E.
, and
Rzehak
,
R.
,
2013
, “
Flashing Evaporation Under Different Pressure Levels
,”
Nucl. Eng. Des.
,
265
, pp.
801
813
. 10.1016/j.nucengdes.2013.09.027
21.
Lucas
,
D.
,
Frank
,
T.
,
Lifante
,
C.
,
Zwart
,
P.
, and
Burns
,
A.
,
2011
, “
Extension of the Inhomogeneous MUSIG Model for Bubble Condensation
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4359
4367
. 10.1016/j.nucengdes.2010.10.039
22.
Janet
,
J. P.
,
Liao
,
Y.
, and
Lucas
,
D.
,
2015
, “
Heterogeneous Nucleation in CFD Simulation of Flashing Flows in Converging–Diverging Nozzles
,”
Int. J. Multiphase Flow
,
74
, pp.
106
117
. 10.1016/j.ijmultiphaseflow.2015.04.005
23.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1991
, “
On the Modeling of Multidimensional Effects in Boiling Channels
,”
Proceedings of the 27th National Heat Transfer Conference
,
Minneapolis, MN
, pp.
28
31
.
24.
Riznic
,
J. R.
, and
Ishii
,
M.
,
1989
, “
Bubble Number Density in Vapor Generation and Flashing Flow
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1821
1833
. 10.1016/0017-9310(89)90154-3
25.
Liao
,
Y.
, and
Lucas
,
D.
,
2015
, “
3D CFD Simulation of Flashing Flows in a Converging-Diverging Nozzle
,”
Nucl. Eng. Des.
,
292
, pp.
149
163
. 10.1016/j.nucengdes.2015.06.015
26.
Blinkov
,
V. N.
,
Jones
,
O. C.
, and
Nigmatulin
,
B. I.
,
1993
, “
Nucleation and Flashing in Nozzles—2
,”
Int. J. Multiphase Flow
,
19
(
6
), pp.
965
986
. 10.1016/0301-9322(93)90072-3
27.
Liao
,
Y.
,
Rzehak
,
R.
,
Lucas
,
D.
, and
Krepper
,
E.
,
2015
, “
Baseline Closure Model for Dispersed Bubbly Flow: Bubble Coalescence and Breakup
,”
Chem. Eng. Sci.
,
122
, pp.
336
349
. 10.1016/j.ces.2014.09.042
28.
Pelletingeas
,
A.
,
Dufresne
,
L.
, and
Seers
,
P.
,
2016
, “
Characterization of Flow Structures in a Diesel Injector for Different Needle Lifts and a Fluctuating Injection Pressure
,”
ASME J. Fluid Eng.
,
138
(
8
), p.
081105
. 10.1115/1.4033125
29.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Lond. Edinb. Dubl. Phil. Mag. J. Sci.
,
34
(
200
), pp.
94
98
. 10.1080/14786440808635681
30.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Dtsch. Ing.
,
77
, pp.
318
320
.
31.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
,
1952
, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
32.
Bartolomej
,
G. G.
,
Brantov
,
V. G.
,
Molochnikov
,
Y. S.
,
Kharitonov
,
Y. V.
,
Solodkii
,
V. A.
,
Batashova
,
G. N.
, and
Mikhailov
,
V. N.
,
1982
, “
An Experimental Investigation of the True Volumetric Vapour Content With Subcooled Boiling Tubes
,”
Therm. Eng.
,
29
(
3
), pp.
20
22
.
33.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “ULTRA-SHARP Non-oscillatory Convection Schemes for High-Speed Steady Multidimensional Flow,” NASA TM1-2568 (ICOMP-90-12), NASA Lewis Research Center.
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
CRC Press
,
Washington, DC
.
You do not currently have access to this content.