Abstract

The large eddy simulations (LES) are performed to access the film cooling performance of cylindrical and reverse shaped hole for forward and reverse injection configurations. In the case of reverse/backward injection, the secondary flow is injected in such a way that its axial velocity component is in the direction opposite to mainstream flow. The study is carried out for a blowing ratio (M = 1), density ratio (DR = 2.42), and injection angle (α = 35 deg). Formation of counter-rotating vortex pair (CRVP) is one of the major issues in the film cooling. This study revealed that the CRVP found in the case of forward cylindrical hole which promotes coolant jet “liftoff” is completely mitigated in the case of the reverse shaped hole. The coolant coverage for reverse cylindrical and reverse shaped holes is uniform and higher. The reverse shaped hole shows promising results among investigated configurations. The lateral averaged film cooling effectiveness of reverse shaped hole is 1.16–1.42 times higher as compared to the forward shaped holes. The improvement in the lateral averaged film cooling effectiveness of reverse cylindrical hole (RCH) injection over forward cylindrical hole (FCH) injection is 1.33–2 times.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
2.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
. 10.1017/S0022112094003800
3.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
. 10.1017/S0022112096001255
4.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
. 10.1017/S0022112097007891
5.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
J. Eng. Gas Turbines Power
,
90
(
4
), pp.
384
393
. 10.1115/1.3609223
6.
Andreopoulos
,
J.
,
1985
, “
On the Structure of Jets in a Crossflow
,”
J. Fluid Mech.
,
157
, pp.
163
197
. 10.1017/S0022112085002348
7.
Shvarts
,
A. G.
, and
Yastrebov
,
V. A.
,
2018
, “
Fluid Flow Across a Wavy Channel Brought in Contact
,”
Tribol Int.
,
126
, pp.
116
126
. 10.1016/j.triboint.2018.05.005
8.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
18
34
. 10.1016/j.ijheatfluidflow.2007.07.010
9.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
. 10.1017/S0022112097007271
10.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation of Leading Edge Film Cooling—Part II: Heat Transfer and Effect of Blowing Ratio
,”
ASME J. Turbomach.
,
130
(
4
), p.
041015
. 10.1115/1.2812411
11.
Zheng
,
Y.
, and
Hassan
,
I.
,
2014
, “
Experimental Flow Field Investigations of a Film Cooling Hole Featuring an Orifice
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
766
776
. 10.1016/j.applthermaleng.2013.10.008
12.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
J. Turbomach.
,
125
(
1
), pp.
65
73
. 10.1115/1.1515336
13.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1996
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
Proceedings of ASME 1996 International Gas Turbine Aeroengine Congress Exhibition GT 1996
,
Birmingham, UK
,
Apr. 4, 1998
, pp.
327
336
.
14.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
J. Heat Transfer
,
122
(
2
), pp.
224
232
. 10.1115/1.521484
15.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), pp.
021007
10
. 10.1115/1.2950059
16.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
. 10.1007/s00231-009-0523-8
17.
Wu
,
H.
,
Cheng
,
H.
,
Li
,
Y.
,
Rong
,
C.
, and
Ding
,
S.
,
2016
, “
Effects of Side Hole Position and Blowing Ratio on Sister Hole Film Cooling Performance in a Flat Plate
,”
Appl. Therm. Eng.
,
93
, pp.
718
730
. 10.1016/j.applthermaleng.2015.09.118
18.
Shetty
,
S.
,
Li
,
X.
, and
Subbuswamy
,
G.
,
2012
, “
Ht2012-58 Numerical Simulation on Gas Turbine Film Cooling of Curved Surface
,”
ASME 2012 Summer Heat Transfer Conference HT2012
,
Rio Grande, Puerto Rico
, pp.
1
8
.
19.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
. 10.2514/1.T4518
20.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2017
, “
Experimental and Numerical Studies on Film Cooling With Reverse/Backward Coolant Injection
,”
Int. J. Therm. Sci.
,
111
, pp.
390
408
. 10.1016/j.ijthermalsci.2016.09.027
21.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
J. Turbomach.
,
125
(
4
), pp.
734
742
. 10.1115/1.1625397
22.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2006
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
110
125
. 10.1111/j.1749-6632.2001.tb05846.x
23.
Tyliszczak
,
A.
,
Drobniak
,
Stanisław
, and
Bogusławski
,
Andrzej
,
2008
, “
Some Remarks on Modelling and Simulation of Turbulence 1
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
243
256
.
24.
Guo
,
X.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
(
6
), pp.
587
606
. 10.1016/j.compfluid.2005.02.007
25.
Ke
,
Z.
, and
Wang
,
J.
,
2016
, “
Conjugate Heat Transfer Simulations of Pulsed Film Cooling on an Entire Turbine Vane
,”
Appl. Therm. Eng.
,
109
, pp.
600
609
. 10.1016/j.applthermaleng.2016.08.132
26.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H. J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
. 10.1016/j.ijheatfluidflow.2010.06.010
27.
Shinn
,
A. F.
, and
S. Pratap
,
Vanka
,
2017
, “
Large eddy simulations of film-cooling flows with a micro-ramp vortex generator
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011
,
Denver, CO
.
28.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow, Turbul. Combust.
,
80
(
1
), pp.
119
132
. 10.1007/s10494-007-9080-8
29.
Baagherzadeh Hushmandi
,
N.
,
2018
, “
Large Eddy Simulation of Flat Plate Film Cooling at High Blowing Ratio Using Open FOAM
,”
Heat Mass Transfer
,
54
(
6
), pp.
1603
1611
. 10.1007/s00231-017-2225-y
30.
Gräf
,
L.
, and
Kleiser
,
L.
,
2011
, “
Large-Eddy Simulation of Double-Row Compound-Angle Film Cooling: Setup and Validation
,”
Comput. Fluids
,
43
(
1
), pp.
58
67
. 10.1016/j.compfluid.2010.09.032
31.
Wang
,
T.
, and
Li
,
X.
,
2008
, “
Mist Film Cooling Simulation at Gas Turbine Operating Conditions
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5305
5317
. 10.1016/j.ijheatmasstransfer.2008.04.040
32.
Schumann
,
U.
,
1975
, “
Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
,
18
(
4
), pp.
376
404
. 10.1016/0021-9991(75)90093-5
33.
Najm
,
H. N.
,
Wyckoff
,
P. S.
, and
Knio
,
O. M.
,
1998
, “
A Semi-implicit Numerical Scheme for Reacting Flow: I. Stiff Chemistry
,”
J. Comput. Phys.
,
143
(
2
), pp.
381
402
. 10.1006/jcph.1997.5856
34.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
. 10.1063/1.865552
35.
Lee
,
C. Y.
, and
Cant
,
S.
,
2017
, “
Assessment of LES Subgrid-Scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
155
176
. 10.1007/s10494-016-9751-4
36.
Penttinen
,
O.
,
2011
,
A PimpleFoam Tutorial for Channel Flow, With Respect to Different LES Models
,” Change, pp.
1
23
.
37.
Chang
,
K. C.
, and
Lee
,
K. H.
,
2017
, “
Determination of Mixing Length in Turbulent Mixing Layer on Basis of Vorticity Field
,”
Int. J. Heat Fluid Flow
,
66
, pp.
121
126
. 10.1016/j.ijheatfluidflow.2017.06.001
38.
Greenshields
,
C. J.
,
2015
,
UserGuide OpenFoamVersion 3.0.1
.
39.
Acharya
,
S.
, and
Leedom
,
D. H.
,
2013
, “
Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
. 10.1115/1.4007667
40.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2015
, “
A Numerical Study on the 2D Film Cooling of a Flat Surface
,”
Numer. Heat Transfer, Part A
,
67
(
6
), pp.
673
695
. 10.1080/10407782.2014.949131
41.
Prenter
,
R.
,
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2017
, “
Experimental Characterization of Reverse-Oriented Film Cooling
,”
Proceedings of ASME Turbo Expo
,
Charlotte, NC
, pp.
1
14
.
42.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
. 10.1016/j.ijheatfluidflow.2009.06.006
43.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New. J. Phys.
,
6
, p.
35
. 10.1088/1367-2630/6/1/035
44.
Georgiadis
,
N. J.
,
Fureby
,
C.
, and
Defence
,
S.
,
2010
, “
Large-Eddy Simulation : Current Capabilities, Recommended Practices, and Large-Eddy Simulation : Current Capabilities, Recommended Practices, and Future Research
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
,
Orlando, FL
.
45.
Jiang
,
Y.
,
Mao
,
M. L.
,
Deng
,
X. G.
, and
Liu
,
H. Y.
,
2015
, “
Numerical Investigation on Body-Wake Flow Interaction Over Rod-Airfoil Configuration
,”
J. Fluid Mech.
,
779
, pp.
1
35
. 10.1017/jfm.2015.419
46.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-Eddy Simulation of an Inclined Round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
. 10.1016/j.ijheatmasstransfer.2013.10.027
47.
Johnson
,
P. L.
,
2012
, “
Large Eddy Simulation of a Film Cooling Flow Injected From an Inclined Discrete Cylindrical Hole Into a Cross flow With Zero-Pressure Gradient Turbulent Boundary Layer
,” (August).
48.
Pachpute
,
S.
, and
Premachandran
,
B.
,
2018
, “
Experimental Investigation and Large Eddy Simulations of Turbulent Slot Jet Impingement Cooling of a Circular Cylinder With and Without a Quadrilateral Confinement
,”
Appl. Therm. Eng.
,
144
, pp.
854
876
. 10.1016/j.applthermaleng.2018.08.101
49.
Babu
,
H.
, and
Sarkar
,
S.
,
2014
, “
Large Eddy Simulation on the Interactions of Wake and Film-Cooling Near a Leading Edge
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
, pp.
1
14
.
50.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Discharge Coefficient Measurements of Film-Cooling Holes with Expanded Exits
,”
Proceedings of ASME Turbo Expo
,
Orlando, FL
.
51.
Taslim
,
M.
, and
Ugarte
,
S.
,
2004
, “
Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes With Cross-Flow
,”
Int. J. Rotating Mach.
,
10
(
2
), pp.
145
153
. 10.1155/S1023621X04000156
52.
Liu
,
C. L.
,
Liu
,
J. L.
,
Zhu
,
H. R.
,
Wu
,
A. S.
,
He
,
Y. H.
, and
Zhou
,
Z. X.
,
2015
, “
Film Cooling Sensitivity of Laidback Fanshape Holes to Variations in Exit Configuration and Mainstream Turbulence Intensity
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1141
1154
. 10.1016/j.ijheatmasstransfer.2015.06.019
You do not currently have access to this content.