Abstract

A noninvasive, thermal energy flowrate sensor based on a combination of heat flux and temperature measurements is developed for measuring the volume flowrate and the fluid temperature in a pipe. The sensor is covered by a thin-film heater and clamped onto the outer surface of the pipe. Two types of thin-film thermocouple elements are compared to minimize the thermal contact resistance R between the thermocouple and the surface of the pipe. A thin, flexible thermopile heat flux sensor (PHFS) is mounted over the thermocouples. A one-dimensional transient thermal model is applied before and during activation of the external heater to provide estimates of the fluid heat transfer coefficient h. The results are correlated with the volume flowrate Q and the fluid temperature Twc. Several different parameter estimation codes are used to estimate the optimal parameters by using the minimum root-mean-square (rms) error between the analytical and experimental sensor temperature values. The experiments are completed over a range of volume flowrates—1.3 gallons/min to 14.5 gallons/min. Encouraging measurement results give good correlation, repeatability, and sensitivity between the heat transfer coefficient h and the volume flowrate Q with an accurate estimation of the fluid temperature Twc. The resulting noninvasive thermal energy flowrate sensor can be used to estimate the volume flowrate and the fluid temperature in a variety of applications.

References

1.
Perez-Lombard
,
L.
,
Ortiz
,
J.
, and
Maestre
,
I. R.
,
2011
, “
The Map of Energy Flow in HVAC Systems
,”
Appl. Energy
,
88
(
12
), pp.
5020
5031
. 10.1016/j.apenergy.2011.07.003
2.
Treado
,
S.
, and
Chen
,
Y.
,
2013
, “
Saving Building Energy Through Advanced Control Strategies
,”
Energies
,
6
(
9
), pp.
4769
4785
. 10.3390/en6094769
3.
Maarof
,
M. I.
,
Chala Girma
,
T.
,
Hazzran
,
H.
, and
Amir
,
A. A. R.
,
2018
, “
Smart Metering Device for HVAC System
,”
Int. J. Mech. Eng. Technol.
,
9
(
8
), pp.
397
403
.
4.
Shaikh
,
P. H.
,
Nor
,
N. B. M.
,
Nallagownden
,
P.
,
Elamvazuthi
,
I.
, and
Ibrahim
,
T.
,
2014
, “
A Review on Optimized Control Systems for Building Energy and Comfort Management of Smart Sustainable Buildings
,”
Renewable Sustainable Energy Rev.
,
34
, pp.
409
429
. 10.1016/j.rser.2014.03.027
5.
Cao
,
X.
,
Dai
,
X.
, and
Liu
,
J.
,
2016
, “
Building Energy-Consumption Status Worldwide and the State-of-the-art Technologies for Zero-Energy Buildings During the Past Decade
,”
Energy Build.
,
128
, pp.
198
213
. 10.1016/j.enbuild.2016.06.089
6.
Fernandez
,
N.
,
Katipamula
,
S.
,
Wang
,
W.
,
Xie
,
Y.
, and
Zhao
,
M.
,
2018
, “
Energy Savings Potential From Improved Building Controls for the US Commercial Building Sector
,”
Energy Effic.
,
11
(
2
), pp.
393
413
. 10.1007/s12053-017-9569-5
7.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
. 10.1016/j.enbuild.2007.03.007
8.
Cerimovic
,
S.
,
Treytl
,
A.
,
Glatzl
,
T.
,
Beigelbeck
,
R.
,
Keplinger
,
F.
, and
Sauter
,
T.
,
2018
, “
Thermal Flow Sensor for Non-Invasive Measurements in HVAC Systems
,”
Multidisciplinary Digital Publishing Institute Proceedings
,
Graz, Austria
,
Sept. 9–12
.
9.
Cerimovic
,
S.
,
Treytl
,
A.
,
Glatzl
,
T.
,
Beigelbeck
,
R.
,
Keplinger
,
F.
, and
Sauter
,
T.
,
2019
, “
Development and Characterization of Thermal Flow Sensors for Non-Invasive Measurements in HVAC Systems
,”
Sensors
,
19
(
6
), p.
1397
. 10.3390/s19061397
10.
Medeiros
,
K. A. R.
,
Barbosa
,
C. R. H.
, and
de Oliveira
,
E. C.
,
2015
, “
Flow Measurement by Piezoelectric Accelerometers: Application in the oil Industry
,”
Pet. Sci. Technol.
,
33
(
13–14
), pp.
1402
1409
. 10.1080/10916466.2015.1044613
11.
Lannes
,
D. P.
,
Gama
,
A. L.
, and
Bento
,
T. F. B.
,
2018
, “
Measurement of Flow Rate Using Straight Pipes and Pipe Bends With Integrated Piezoelectric Sensors
,”
Flow Meas. Instrum.
,
60
, pp.
208
216
. 10.1016/j.flowmeasinst.2018.03.001
12.
Fan
,
Z.
,
Cai
,
M.
, and
Xu
,
W.
,
2012
, “
Non-Invasive and Non-Intrusive gas Flow Measurement Based on the Dynamic Thermal Characteristics of a Pipeline
,”
Meas. Sci. Technol.
,
23
(
10
), p.
105303
. 10.1088/0957-0233/23/10/105303
13.
Hogendoorn
,
J.
,
Hofstede
,
H.
,
van Brakel
,
P.
, and
Boer
,
A.
,
2011
, “
How Accurate Are Ultrasonic Flowmeters in Practical Conditions; Beyond the Calibration
,”
29th International North sea Flow Measurement Workshop
,
Tonsberg, Norway
,
Oct. 25–28
.
14.
Tawackolian
,
K.
,
Büker
,
O.
,
Hogendoorn
,
J.
, and
Lederer
,
T.
,
2013
, “
Calibration of an Ultrasonic Flow Meter for Hot Water
,”
Flow Meas. Instrum.
,
30
, pp.
166
173
. 10.1016/j.flowmeasinst.2012.05.003
15.
Elwenspoek
,
M.
,
1999
, “
Thermal Flow Micro Sensors
,”
Proceedings of the International Semiconductor Conference
,
Sinaia, Romania
,
Oct. 5–9
, Volume 2, pp.
423
435
.
16.
Nguyen
,
N. T.
,
1997
, “
Micromachined Fow Sensors—A Review
,”
Flow Meas. Instrum.
,
8
(
1
), pp.
7
16
. 10.1016/S0955-5986(97)00019-8
17.
Ashauer
,
M.
,
Glosch
,
H.
,
Hedrich
,
F.
,
Hey
,
N.
,
Sandmaier
,
H.
, and
Lang
,
W.
,
1999
, “
Thermal Flow Sensor for Liquids and Gases Based on Combinations of Two Principles
,”
Sens. Actuators, A
,
73
(
1–2
), pp.
7
13
. 10.1016/S0924-4247(98)00248-9
18.
Dijkstra
,
M.
,
Lammerink
,
T. S.
,
de Boer
,
M. J.
,
Berenschot
,
J. W.
,
Wiegerink
,
R. J.
, and
Elwenspoek
,
M. C.
,
2008
, “
Low-drift U-Shaped Thermopile Flow Sensor
,”
SENSORS, 2008
,
Lecce, Italy
,
Oct. 26–29
, IEEE, pp.
66
69
.
19.
Rasmussen
,
A.
, and
Zaghloul
,
M. E.
,
1999
, “
The Design and Fabrication of Microfluidic Flow Sensors
,”
ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349)
,
Washington, DC
, IEEE, Vol.
5
, pp.
136
139
.
20.
Singer
,
J.
,
Jansen
,
S.
,
Wang
,
C.
, and
Lee
,
H.
,
2017
, “
Non-Invasive Water Flow Sensing for Smart Water Heater Controller
,”
ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, Vol.
58417
, p.
V006T08A047
.
21.
Baker
,
K. I.
,
1993
, “
Unsteady Surface Heat Flux and Temperature Measurements
,”
M.S. thesis
,
Virginia Tech
,
Blacksburg, VA
.
22.
Roghanizad
,
A.
,
2017
, “
A New Solution Method for Blood Perfusion Measurement Using BioHeat Perfusion Sensors
,”
M.S. thesis
,
Virginia Tech
,
Blacksburg, VA
.
23.
Figliola
,
R.
, and
Beasly
,
D.
,
1991
,
Theory and Design For Mechanical Measurements
, Ch. 5,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.