Abstract

This paper presents an experimental investigation of a miniature ejector using water as the working fluid. The investigated ejector cooling system can utilize the thermal energy to be removed to power the cooling system and maintain the temperature of an electronic component below ambient temperature. The effects of working conditions, nozzle exit position (NXP), and area ratio on the coefficient of performance (COP) of ejector performance were investigated. Experimental results show that the miniature ejector can function well when the temperature in the high-temperature evaporator (HTE) ranges from 55 °C to 70 °C and can achieve a COP (coefficient of performance) of 0.66. With an increase of the NXP, the COP decreases, while the critical condensing pressure first increases and then decreases. As the area ratio of the miniature ejector increases, the COP increases, and the critical condensing pressure decreases.

References

1.
Wang
,
Y.
,
Wang
,
B.
,
Zhu
,
K.
,
Li
,
H.
,
He
,
W.
, and
Liu
,
S.
,
2018
, “
Energy Saving Potential of Using Heat Pipes for CPU Cooling
,”
Appl. Therm. Eng.
,
143
, pp.
630
638
. 10.1016/j.applthermaleng.2018.07.132
2.
Riffat
,
S.
, and
Holt
,
A.
,
1998
, “
A Novel Heat Pipe/Ejector Cooler
,”
Appl. Therm. Eng.
,
18
(
3–4
), pp.
93
101
. 10.1016/S1359-4311(97)00053-7
3.
Smirnov
,
H.
, and
Kosoy
,
B.
,
2001
, “
Refrigerating Heat Pipes
,”
Appl. Therm. Eng.
,
21
(
6
), pp.
631
641
. 10.1016/S1359-4311(00)00085-5
4.
Shi
,
M. H.
,
Wang
,
X. C.
, and
Cai
,
H.
,
2006
, “
Numerical Simulation of the Performance of a Capillary Thermal Driven Ejector Refrigerator
,”
Heat Transfer Eng.
,
27
(
2
), pp.
23
28
. 10.1080/01457630500397559
5.
Ziapour
,
B. M.
, and
Abbasy
,
A.
,
2010
, “
First and Second Laws Analysis of the Heat Pipe/Ejector Refrigeration Cycle
,”
Energy
,
35
(
8
), pp.
3307
3314
. 10.1016/j.energy.2010.04.016
6.
Xing
,
M.
,
Wang
,
R.
, and
Xu
,
R.
,
2018
, “
Experimental Study on Thermal Performance of a Pulsating Heat Pipe With Surfactant Aqueous Solution
,”
Int. J. Heat Mass Transfer
,
127
, pp.
903
909
. 10.1016/j.ijheatmasstransfer.2018.07.130
7.
Thompson
,
S. M.
,
Lu
,
H.
, and
Ma
,
H.
,
2015
, “
Thermal Spreading With Flat-Plate Oscillating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
29
(
2
), pp.
338
345
. 10.2514/1.T4168
8.
Tang
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Shi
,
C.
,
2018
, “
Combined Auxiliary Entrainment and Structure Optimization for Performance Improvement of Steam Ejector With Consideration of Back Pressure Variation
,”
Energy Convers. Manage.
,
166
, pp.
163
173
. 10.1016/j.enconman.2018.04.029
9.
Ramesh
,
A. S.
, and
Sekhar
,
S. J.
,
2018
, “
Experimental Studies on the Effect of Suction Chamber Angle on the Entrainment of Passive Fluid in a Steam Ejector
,”
J. Fluid. Eng.
,
140
(
1
), p.
011106
. 10.1115/1.4037692
10.
Dong
,
J.
,
Pounds
,
D. A.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2012
, “
An Experimental Investigation of Steam Ejector Refrigeration Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
3
), p.
031004
. 10.1115/1.4006714
11.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2018
, “
Metal 3D-Printed Wick Structures for Heat Pipe Application: Capillary Performance Analysis
,”
Appl. Therm. Eng.
,
143
, pp.
403
414
. 10.1016/j.applthermaleng.2018.07.111
12.
Li
,
Z.
,
2018
, “
Design and Preliminary Experiments of a Novel Heat Pipe Using a Spiral Coil as Capillary Wick
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1240
1251
. 10.1016/j.ijheatmasstransfer.2018.05.110
13.
Wang
,
Z.
,
Song
,
Y.
,
Yang
,
J.
,
Yu
,
H.
,
Jiao
,
B.
, and
Yu
,
X.
,
2018
, “
The Visualized Investigation of a Silicon Based Built-in Heat Pipe Micropillar Wick Structure
,”
Appl. Therm. Eng.
,
144
, pp.
1117
1125
. 10.1016/j.applthermaleng.2018.08.060
14.
Wong
,
S.-C.
, and
Liao
,
W.-S.
,
2018
, “
Visualization Experiments on Flat-Plate Heat Pipes With Composite Mesh-Groove Wick at Different Tilt Angles
,”
Int. J. Heat Mass Transfer
,
123
, pp.
839
847
. 10.1016/j.ijheatmasstransfer.2018.03.031
15.
Ruangtrakoon
,
N.
, and
Aphornratana
,
S.
,
2014
, “
Development and Performance of Steam Ejector Refrigeration System Operated in Real Application in Thailand
,”
Int. J. Refrig.
,
48
, pp.
142
152
. 10.1016/j.ijrefrig.2014.09.010
16.
Tang
,
Y.
,
Liu
,
Z.
,
Shi
,
C.
, and
Li
,
Y.
,
2018
, “
A Novel Steam Ejector with Pressure Regulation to Optimize the Entrained Flow Passage for Performance Improvement in MED-TVC Desalination System
,”
Energy
,
158
, pp.
305
316
. 10.1016/j.energy.2018.06.028
17.
Wu
,
Y.
,
Zhao
,
H.
,
Zhang
,
C.
,
Wang
,
L.
, and
Han
,
J.
,
2018
, “
Optimization Analysis of Structure Parameters of Steam Ejector Based on CFD and Orthogonal Test
,”
Energy
,
151
, pp.
79
93
. 10.1016/j.energy.2018.03.041
18.
Fu
,
W.
,
Liu
,
Z.
,
Li
,
Y.
,
Wu
,
H.
, and
Tang
,
Y.
,
2018
, “
Numerical Study for the Influences of Primary Steam Nozzle Distance and Mixing Chamber Throat Diameter on Steam Ejector Performance
,”
Int. J. Therm. Sci.
,
132
, pp.
509
516
. 10.1016/j.ijthermalsci.2018.06.033
19.
Fu
,
W.
,
Li
,
Y.
,
Liu
,
Z.
,
Wu
,
H.
, and
Wu
,
T.
,
2016
, “
Numerical Study for the Influences of Primary Nozzle on Steam Ejector Performance
,”
Appl. Therm. Eng.
,
106
, pp.
1148
1156
. 10.1016/j.applthermaleng.2016.06.111
20.
Dong
,
J.
,
Wang
,
W.
,
Han
,
Z.
,
Ma
,
H.
,
Deng
,
Y.
,
Su
,
F.
, and
Pan
,
X.
,
2018
, “
Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source
,”
Energies
,
11
(
9
), p.
2282
. 10.3390/en11092282
21.
Dong
,
J.
,
Chen
,
X.
,
Wang
,
W.
,
Kang
,
C.
, and
Ma
,
H.
,
2017
, “
An Experimental Investigation of Steam Ejector Refrigeration System Powered by Extra Low Temperature Heat Source
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
250
256
. 10.1016/j.icheatmasstransfer.2016.12.022
22.
Dong
,
J.
,
Yu
,
M.
,
Wang
,
W.
,
Song
,
H.
,
Li
,
C.
, and
Pan
,
X.
,
2017
, “
Experimental Investigation on Low-Temperature Thermal Energy Driven Steam Ejector Refrigeration System for Cooling Application
,”
Appl. Therm. Eng.
,
123
, pp.
167
176
. 10.1016/j.applthermaleng.2017.05.061
23.
Dong
,
J.
,
Kang
,
C. L.
,
Wang
,
H. M.
, and
Ma
,
H. B.
,
2016
, “
Experimental Investigation of Steam Ejector System With an Extra Low Generating Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021017
. 10.1115/1.4032483
24.
Dong
,
J.
,
Song
,
H.
,
Yu
,
M. Q.
,
Wang
,
W. N.
, and
Pan
,
X. X.
,
2017
, “
Numerical Investigation of Miniature Ejector Refrigeration System Embedded With a Capillary Pump Loop
,”
Micromachines
,
8
(
8
), p.
235
. 10.3390/mi8080235
25.
Eames
,
I.
,
Aphornratana
,
S.
, and
Haider
,
H.
,
1995
, “
A Theoretical and Experimental Study of a Small-Scale Steam jet Refrigerator
,”
Int. J. Refrig.
,
18
(
6
), pp.
378
386
. 10.1016/0140-7007(95)98160-M
26.
Dong
,
J.
, and
Ma
,
H. B.
,
2013
, “
Study of Optimum Nozzle Exit Position (NXP) in a Steam Ejector Refrigeration System
,”
Am. Inst. Phys. Conf. Ser.
,
1547
, pp.
115
123
.
27.
Wang
,
C.
,
Wang
,
L.
,
Wang
,
X.
, and
Zhao
,
H.
,
2017
, “
Design and Numerical Investigation of an Adaptive Nozzle Exit Position Ejector in Multi-Effect Distillation Desalination System
,”
Energy
,
140
, pp.
673
681
. 10.1016/j.energy.2017.08.104
28.
Ramesh
,
A.
, and
Sekhar
,
S. J.
,
2018
, “
Experimental and Numerical Investigations on the Effect of Suction Chamber Angle and Nozzle Exit Position of a Steam-Jet Ejector
,”
Energy
,
164
, pp.
1097
1113
. 10.1016/j.energy.2018.09.010
You do not currently have access to this content.