Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation method to investigate bubble dynamics, two-phase flow patterns, and boiling heat transfer. The momentum and energy equations were solved using a finite volume (FV) numerical method, while the liquid–vapor interface of a bubble is captured using the volume of fluid (VOF) technique. The effects of different constant wall heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were also analyzed. The predicted bubble shapes and distribution profiles together with two-phase flow patterns are also provided.
Issue Section:
Research Papers
References
1.
Jiang
, L.
, Wong
, M.
, and Zohar
, Y.
, 2001
, “Forced Convection Boiling in a Microchannel Heat Sinks
,” J. Microelectromech. Syst.
, 10
, pp. 80
–87
.2.
Wu
, H. Y.
, Cheng
, P.
, and Wang
, H.
, 2006
, “Pressure Drop and Flow Boiling Instabilities in Silicon Microchannel Heat Sinks
,” J. Micromech. Microeng.
, 16
, pp. 2138
–2146
.3.
Hsu
, Y. Y.
, 1962
, “On the Size Range of Active Nucleation Cavities on a Heating Surface
,” ASME J. Heat Transfer
, 84
(3
), pp. 207
–216
.4.
Moore
, F. D.
, and Mesler
, R. B.
, 1961
, “The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water
,” AIChE J.
, 7
, pp. 620
–624
.5.
Hapke
, I.
, Boye
, H.
, and Schmidt
, J.
, 2000
, “Onset of Nucleate Boiling in Minichannels
,” Int. J. Therm. Sci.
, 39
, pp. 505
–513
.6.
Qu
, W.
, and Mudawar
, I.
, 2002
, “Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,” Int. J. Heat Mass Transfer
, 45
(19
), pp. 3933
–3945
.7.
Wu
, H. Y.
, and Cheng
, P.
, 2003
, “Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,” Int. J. Heat Mass Transfer
, 46
(14
), pp. 2603
–2614
.8.
Li
, J.
, and Peterson
, G. P.
, 2005
, “Microscale Heterogeneous Boiling on Smooth Surfaces—From Bubble Nucleation to Bubble Dynamics
,” Int. J. Heat Mass Transfer
, 48
(21–22
), pp. 4316
–4332
.9.
Kuo
, C. J.
, Kosar
, A.
, Peles
, Y.
, Virost
, S.
, Mishra
, C.
, and Jensen
, M. K.
, 2006
, “Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,” J. Microelectromech. Syst.
, 15
, pp. 1514
–1527
.10.
Sato
, T.
, and Matsumura
, H.
, 1963
, “On the Conditions of Incipient Subcooled Boiling and Forced Convection
,” Bull. Jpn. Sci. Mech. Eng.
, 7
(26
), pp. 392
–398
.11.
Bergles
, A. E.
, and Rohsenow
, W. M.
, 1964
, “The Determination of Forced-Convection Surface-Boiling Heat Transfer
,” ASME J. Heat Transfer
, 86
, pp. 365
–372
.12.
Hino
, R.
, and Ueda
, T.
, 1985
, “Studies on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling—Part 1: Boiling Characteristics
,” Int. J. Multiphase Flow
, 11
, pp. 269
–281
.13.
Collier
, J. G.
, and Thome
, T. R.
, 1994
, Convective Boiling and Condensation
, 3rd ed., Oxford University Press
, Oxford, UK
.14.
Davis
, E. J.
, and Anderson
, G. H.
, 1966
, “The Incipience of Nucleate Boiling in Forced Convection Flow
,” AIChE J
, 12
, pp. 774
–780
.15.
Kandlikar
, S. G.
, Mizo
, V.
, Cartwright
, M.
, and Ikenze
, E.
, 1997
, “Bubble Nucleation and Growth Characteristics in Subcooled Flow Boiling of Water
,” National Heat Transfer Conference
, Baltimore, MD, Aug. 8–12, Paper No. HTD-342.16.
Celata
, G. P.
, Cumo
, M.
, and Mariani
, A.
, 1997
, “Experimental Evaluation of the Onset of Subcooled Flow Boiling at High Liquid Velocity and Subcooling
,” Int. J. Heat Mass Transfer
, 40
(14
), pp. 2879
–2885
.17.
Basu
, N.
, Warrier
, G. R.
, and Dhir
, V. K.
, 2002
, “Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,” ASME J. Heat Transfer
, 124
(4
), pp. 717
–728
.18.
Ghiaasiaan
, S. M.
, and Chedester
, R. C.
, 2002
, “Boiling Incipience in Microchannels
,” Int. J. Heat Mass Transfer
, 45
, pp. 4599
–4606
.19.
Li
, J.
, and Cheng
, P.
, 2004
, “Bubble Cavitation in a Microchannel
,” Int. J. Heat Mass Transfer
, 47
(12–13
), pp. 2689
–2698
.20.
Lee
, P. C.
, Tseng
, F. G.
, and Pan
, C.
, 2004
, “Bubble Dynamics in Microchannels—Part I: Single Microchannel
,” Int. J. Heat Mass Transfer
, 47
(25
), pp. 5575
–5589.
21.
Li
, H. Y.
, Tseng
, F. G.
, and Pan
, C.
, 2004
, “Bubble Dynamics in Microchannels—Part II: Two Parallel Microchannels
,” Int. J. Heat Mass Transfer
, 47
(25
), pp. 5591
–5601
.22.
Liu
, D.
, Lee
, P. S.
, and Garimella
, S. V.
, 2005
, “Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,” Int. J. Heat Mass Transfer
, 48
, pp. 5134
–5149
.23.
Cole
, R.
, and Rohsenow
, W. M.
, 1969
, “Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids
,” AIChE Chem. Eng. Prog. Symp. Ser.
, 65
, pp. 211
–213
.24.
Kocamustafaogullari
, G.
, and Ishii
, M.
, 1983
, “Interfacial Area and Nucleation Site Density in Boiling Systems
,” Int. J. Heat Mass Transfer
, 26
, pp. 1377
–1387
.25.
Gorenflo
, D.
, Knabe
, V.
, and Bieling
, V.
, 1986
, “Bubble Density on Surfaces With Nucleate Boiling—It's Influence on Heat Transfer and Burnout Heat Fluxes at Elevated Saturation Pressures
,” Eighth International Heat Transfer Conference, San Francisco, CA, Aug. 17–22,
pp. 1995
–2000
.26.
Peebles
, F. N.
, and Garber
, H. J.
, 1953
, “Studies on Motion of Gas Bubbles in Liquids
,” Chem. Eng. Prog.
, 49
, pp. 88
–97
.27.
Zuber
, N.
, 1963
, “Nucleate Boiling—The Region of Isolated Bubbles—Similarity With Natural Convection
,” Int. J. Heat Mass Transfer
, 6
, pp. 53
–65
.28.
Malenkov
, I. G.
, 1971
, “Detachment Frequency as a Function of Size of Vapor Bubbles
,” J. Eng. Phys.
, 20
(6
), pp. 704
–708
.https://link.springer.com/content/pdf/10.1007%2FBF01122590.pdf29.
Kennedy
, J. E.
, Roach
, G. M.
, Dowling
, M. F.
, Abdel-Khalik
, S. I.
, Ghiaasiaan
, S. M.
, Jester
, S. M.
, and Quershi
, Z. H.
, 2000
, “The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,” ASME J. Heat Transfer
, 122
(1
), pp. 118
–125
.30.
Dhir
, V. K.
, 1998
, “Boiling Heat Transfer
,” Annu. Rev. Fluid Mech.
, 30
, pp. 365
–401
.31.
Kandlikar
, S. G.
, 2002
, “Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,” Exp. Therm. Fluid Sci.
, 26
(2–4
), pp. 389
–407
.32.
Patankar
, S. V.
, 1980
, Numerical Heat Transfer and Fluid Flow
, Hemisphere Publishing
, Washington, DC
.33.
Brackbill
, J. U.
, Kothe
, D. B.
, and Zemach
, C.
, 1992
, “A Continuum Method for Modeling Surface Tension
,” J. Comput. Phys.
, 100
, pp. 335
–354
.34.
ANSYS, 2018, “ANSYS Fluent,” ANSYS, Canonsburg, PA, acessed Jan. 27, 2018, https://www.ansys.com/Products/Fluids/ANSYS-Fluent
35.
Rider
, W. J.
, and Kothe
, D. B.
, 1998
, “Reconstructing Volume Tracking
,” J. Comput. Phys.
, 141
, pp. 112
–152
.36.
Welch
, S. W.
, and Wilson
, J.
, 2000
, “A Volume of Fluid Based Method for Fluid Flows With Phase Change
,” J. Comput. Phys.
, 160
(2
), pp. 662
–682
.37.
Kandlikar
, S. G.
, 2004
, “Heat Transfer Mechanisms During Flow Boiling in Microchannels
,” ASME J. Heat Transfer
, 126
, pp. 8
–16
.38.
Kandlikar
, S. G.
, 2006
, “Single-Phase Liquid Flow in Minichannels and Microchannels
,” Heat Transfer and Fluid Flow in Minichannels and Microchannels
, Elsevier
, Oxford, UK
, pp. 87
–136
.39.
Lee
, W. H.
, 1979
, “A Pressure Iteration Scheme for Two-Phase Flow Modeling,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No. LA-UR-79-975.40.
Kew
, P. A.
, and Cornwell
, K.
, 1997
, “Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,” Appl. Therm. Eng.
, 17
(8–10
), pp. 705
–715
.41.
Wang
, G.
, Cheng
, P.
, and Bergles
, A. E.
, 2008
, “Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,” Int. J. Heat Mass Transfer
, 51
, pp. 2267
–2281
.42.
Qu
, W.
, and Mudawar
, I.
, 2004
, “Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,” ASME J. Electron. Packag.
, 126
, pp. 213
–224
.43.
Ravigururajan
, T. S.
, 1998
, “Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers
,” ASME J. Heat Transfer
, 120
, pp. 485
–491
.44.
Kandlikar
, S. G.
, and Balasubramanian
, P.
, 2004
, “An Extension of the Flow Boiling Correlation to Transition, Laminar and Deep Laminar Flows in Minichannels and Microchannels
,” Heat Transfer Eng.
, 25
, pp. 86
–93
.45.
Lee
, J.
, and Mudawar
, I.
, 2005
, “Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications—Part II: Heat Transfer Characteristics
,” Int. J. Heat Mass Transfer
, 48
, pp. 941
–955
.46.
Diaz
, M. C.
, and Schmidt
, J.
, 2007
, “Experimental Investigation of Transient Boiling Heat Transfer in Microchannels
,” Int. J. Heat Fluid Flow
, 28
, pp. 95
–102
.47.
Jacobi
, A. M.
, and Thome
, J. R.
, 2002
, “Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,” ASME J. Heat Transfer
, 124
(6
), pp. 1131
–1136
.48.
Thome
, J. R.
, Dupont
, V.
, and Jacobi
, A. M.
, 2004
, “Heat Transfer Model for Evaporation in Microchannels—Part I: Presentation of the Model
,” Int. J. Heat Mass Transfer
, 47
(14–16
), pp. 3375
–3385
.49.
Li
, W.
, and Wu
, Z.
, 2010
, “A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels
,” Int. J. Heat Mass Transfer
, 53
(9–10
), pp. 1778
–1787
.Copyright © 2018 by ASME
You do not currently have access to this content.