This paper presents an integrated power electronics module with a vapor chamber (VC) acting as a heat spreader to transfer the heat from the insulated gate bipolar transistor (IGBT) module to the base of the heat-sink. The novel VC integrated in a power module instead of a metal substrate is proposed. Compared with a conventional metal heat spreader, the VC significantly diffuses the concentrated heat source to a larger condensing area. The experimental results indicate that the VC based heat-sink will maintain the IGBT junction temperature 20°C cooler than a non-VC based heat-sink with high power density. The junction-to-case thermal resistance of the power module based on the VC is about 50% less than that of the power module based on a copper substrate with the same weight. The chip overshooting temperature of the copper substrate module with the same weight goes beyond 10°C against the junction temperature of the VC module at a given impulse power of 225 W. Consequently, thanks to a longer time duration to reach the same temperature, a power surge for the chip can be avoided and the ability to resist thermal impact during the VC module startup can be improved as well. The investigation shows that the VC power module is an excellent candidate for the original metal substrate, especially for an integrated power module with high power density.

1.
Wei
,
X. J.
, and
Joshi
,
Y.
, 2006, “
Microchannel Heat Sinks for Electronics Cooling A Review
,”
18th National and 7th ISHMT ASME Heat and Mass Transfer Conference
, Guwahati, India, Jan. 4–6, pp.
2407
2416
.
2.
Peterson
,
G. P.
, 1990, “
Thermal Control of Electronic Equipment and Devices
,”
Adv. Heat Transfer
0065-2717,
20
, pp.
181
314
.
3.
van Wyk
,
J. D.
, 2000, “
Power Electronics Technology at the Dawn of a New Century-Past Achievements and Future Expectations
,”
Proceedings of the Third International Power Electronics and Motion Control Conference (PEMC 2000)
, Aug. 15–18, Vol.
1
, pp.
9
20
.
4.
Lee
,
F. C.
,
van Wyk
,
J. D.
,
Boroyevich
,
D.
,
Lu
,
G. -Q.
,
Liang
,
Z.
, and
Barbosa
,
P.
, 2002, “
Technology Trends Toward a System-in-a-Module in Power Electronics
,”
IEEE Circuits Syst. Mag.
1531-636X,
2
(
4
), pp.
4
22
.
5.
Take
,
K.
, and
Webb
,
L. R.
, 2001, “
Thermal Performance of Integrated Plate Heat Pipe With a Heat Spreader
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
189
195
.
6.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Prasher
,
R.
, 2002, “
Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
, pp.
621
628
.
7.
Wei
,
J.
,
Cha
,
A.
, and
Copeland
,
D.
, 2003, “
Measurement of Vapor Chamber Performance
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
191
194
.
8.
Gillot
,
C.
,
Avenas
,
Y.
,
Cezac
,
N.
,
Poupon
,
G.
,
Schaeffer
,
C.
, and
Fournier
,
E.
, 2003, “
Silicon Heat Pipes Used as Thermal Spreaders
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
2
), pp.
332
339
.
9.
Vadakkan
,
U.
,
Chrysler
,
G. M.
, and
Sane
,
S.
, 2005, “
Silicon/Water Vapor Chamber as Heat Spreaders for Microelectronic Packages
,”
21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
182
186
.
10.
Martens
,
T. J.
,
Nellis
,
G. F.
,
Pfotenhauer
,
J. M.
, and
Jahns
,
T. M.
, 2005, “
Double-Sided IPEM Cooling Using Miniature Heat Pipes
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
4
), pp.
852
861
.
11.
Ivanova
,
M.
,
Avenas
,
Y.
,
Schaeffer
,
C.
,
Dezord
,
J.-B.
, and
Schulz-Harder
,
J.
, 2006, “
Heat Pipe Integrated in Direct Bonded Copper Technology for Cooling of Power Electronics Packaging
,”
IEEE Trans. Power Electron.
0885-8993,
21
(
6
), pp.
230
243
.
12.
Carbajal
,
G.
,
Sobhan
,
C. B.
,
Peterson
,
G. P.
,
Queheillalt
,
D. T.
, and
Wadley
,
H. N. G.
, 2006, “
Thermal Response of a Flat Heat Pipe Sandwich Structure to a Localized Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
116
, pp.
1201
1215
.
13.
Xie
,
X. L.
,
He
,
Y. L.
,
Tao
,
W. Q.
, and
Yang
,
H. W.
, 2008, “
An Experimental Investigation on a Novel High-Performance Integrated Heat Pipe-Heat Sink for High-Flux Chip Cooling
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
433
439
.
14.
Wang
,
Y.
, and
Vafa
,
K.
, 2000, “
Transient Characteristics of Flat-Plate Heat Pipe During Startup and Shutdown Operations
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2641
2655
.
15.
Popova
,
N.
,
Schaeffer
,
Ch.
,
Sarno
,
C.
,
Parbaud
,
S.
, and
Kapelski
,
G.
, 2005, “
Thermal Management of Sintered Copper Heat Pipe Integrated in Stacked 3D Electronic Package
,”
36th IEEE Power Electronics Specialists Conference (PESC '05)
, Recife, Brazil, pp.
12
16
.
16.
Zhu
,
N.
, and
Vafai
,
K.
, 1998, “
Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: A Three-Dimensional Analytical and Numerical Investigation
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
159
174
.
17.
Xuan
,
Y.
,
Hong
,
Y.
, and
Li
,
Q.
, 2004, “
Investigation of Transient Behaviors of Flat Plate Heat Pipes
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
249
255
.
18.
Wang
,
Y.
, and
Vafa
,
K.
, 2000, “
An Experimental Investigation of the Transient Characteristics on a Flat-Plate Heat Pipe During Startup and Shutdown Operations
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
525
535
.
You do not currently have access to this content.