Abstract

The energy efficiency benefits of both static and dynamic overhangs made-up of smart glazing materials are assessed when deployed to windows of prototypical office buildings in France. The tint level and the tilt angle settings of overhangs made-up of smart glazing can be adjusted on an hourly, daily, and monthly basis with the main objective of minimizing the overall building’s annual energy consumption. In this study, annual energy end-uses for the prototypical office building equipped with smart glazed overhangs are compared to those obtained for the baseline case with no shading and the case with static opaque overhangs. The analysis results show that the use of opaque and smart glazed overhangs for office buildings in Paris could achieve annual whole-building energy savings of 1.36% and 4.12%, respectively, compared to no-shading case. Moreover, the energy efficiency benefits of the dynamic overhangs are found to depend on a wide range of design features and climatic conditions. It is found that energy savings incurred by the deployment of overhangs made-up of smart glazed materials increase with the window size. The evaluated smart glazed overhangs provide a low-cost alternative to the installation of high-performance windows, especially for existing commercial buildings.

References

1.
Parlement européen
,
2021
, “
Efficacité énergétique
,”
Fiches Thématiques sur l’Union Européenne
. www.europarl.europa.eu/factsheets/fr, Accessed April 28, 2022.
2.
Ministère de la Transition écologique
,
2021
, “
Énergie dans les Bâtiments
,”
Construction et Performance Environnementale du Bâtiment
. https://www.ecologie.gouv.fr/energie-dans-batiments, Accessed April 28, 2022.
3.
European Commission
,
2021
, “
EU Economy and Society to Meet Climate Ambitions
,”
EU Economy and Society to Meet Climate Ambitions
. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541, Accessed April 28, 2022.
4.
Ministère de la Transition écologique
,
2022
, “
Réglementation Environnementale RE2020
,”
Construction et Performance Environnementale du Bâtiment
. https://www.ecologie.gouv.fr/reglementation-environnementale-re2020, Accessed April 28, 2022.
5.
Kirimtat
,
A.
,
Kundakci
,
B.
,
Koyunbaba
,
I.
,
Chatzikonstantinou
,
I.
, and
Sariyildiz
,
S.
,
2016
, “
Review of Simulation Modeling for Shading Devices in Buildings
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
23
49
.
6.
Palmero-Marrero
AI
, and
Oliveira
AC
,
2010
, “
Effect of Louver Shading Devices on Building Energy Requirements
,”
Appl. Energy
,
87
(
6
), pp.
2040
2049
.
7.
Department of Energy
, “
Windows
,”
Buildings
. https://www.energy.gov/eere/buildings/windows, Accessed April 28, 2022.
8.
Poirazis
,
H.
,
Blomsterberg
,
A.
, and
Wall
,
M.
,
2008
, “
Energy Simulations for Glazed Office Buildings in Sweden
,”
Energy Build.
,
40
(
7
), pp.
1161
1170
.
9.
Chou
,
C. P.
,
2004
, “
The Performance of Daylighting With Shading Device in Architecture Design
,”
Tamkang J. Sci. Eng.
,
7
, pp.
205
212
.
10.
Carmody
,
J.
,
Selkowitz
,
S.
,
Lee
,
E. S.
, and
Arasteh
,
D.
,
2004
, “
Window Systems for High-Performance Buildings Additional Contributors
,” www.wwnorton.com, Accessed April 28, 2022.
11.
Kuhn
,
T. E.
,
2017
, “
State of the Art of Advanced Solar Control Devices for Buildings
,”
Sol. Energy
,
154
, pp.
112
133
.
12.
Oleskowicz-Popiel
,
C.
, and
Sobczak
,
M.
,
2014
, “
Effect of the Roller Blinds on Heat Losses Through a Double-Glazing Window During Heating Season in Central Europe
,”
Energy Build.
,
73
, pp.
48
58
.
13.
Domínguez-Torres
,
C. A.
,
León-Rodríguez
,
A. L.
,
Suárez
,
R.
, and
Domínguez-Delgado
,
A.
,
2019
, “
Numerical and Experimental Validation of the Solar Radiation Transfer for an Egg-Crate Shading Device Under Mediterranean Climate Conditions
,”
Sol. Energy
,
183
, pp.
755
767
.
14.
Carletti
,
C.
,
Sciurpi
,
F.
,
Pierangioli
,
L..
,
Asdrubali
,
F.
,
Pisello
,
A. L.
,
Bianchi
,
F.
,
Sambuco
,
S.
, and
Guattari
,
C.
,
2016
, “
Thermal and Lighting Effects of an External Venetian Blind: Experimental Analysis in a Full Scale Test Room
,”
Build. Environ.
,
106
, pp.
45
56
.
15.
Bellia
,
L.
,
de Falco
,
F.
, and
Minichiello
,
F.
,
2013
, “
Effects of Solar Shading Devices on Energy Requirements of Standalone Office Buildings for Italian Climates
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
190
201
.
16.
Hernández
,
F. F.
,
Cejudo López
,
J. M.
,
Peña Suárez
,
J. M.
,
González Muriano
,
M. C.
, and
Rueda
,
S. C.
,
2017
, “
Effects of Louvers Shading Devices on Visual Comfort and Energy Demand of an Office Building. A Case of Study
,”
Energy Procedia
,
140
, pp.
207
216
.
17.
Datta
,
G.
,
2001
, “
Effect of Fixed Horizontal Louver Shading Devices on Thermal Performance of Building by TRNSYS Simulation
,” www.elsevier.nl/locate/renene.
18.
Krstić-Furundžić
,
A.
,
Vujošević
,
M.
, and
Petrovski
,
A.
,
2019
, “
Energy and Environmental Performance of the Office Building Facade Scenarios
,”
Energy
,
183
, pp.
437
447
.
19.
de Luca
,
F.
,
Voll
,
H.
, and
Thalfeldt
,
M.
,
2016
, “
Horizontal or Vertical? Windows’ Layout Selection for Shading Devices Optimization
,”
Manag. Environ. Qual.
,
27
(
6
), pp.
623
633
.
20.
Loonen
,
R. C. G. M.
,
Favoin
,
F.
,
Hensen
,
J. L. M.
, and
Overend
,
M.
,
2017
, “
Review of Current Status, Requirements and Opportunities for Building Performance Simulation of Adaptive Facades
,”
J. Building Perform. Simul.
,
10
(
2
), pp.
205
223
.
21.
Krarti
,
M.
,
2021
, “
Evaluation of Energy Performance of Dynamic Overhang Systems for US Residential Buildings
,”
Energy Build.
,
234
, p.
110699
.
22.
Krarti
,
M.
,
2021
, “
Performance of PV Integrated Dynamic Overhangs Applied to US Homes
,”
Energy
,
230
, p.
120843
.
23.
Krarti
,
M.
,
2021
, “
Impact of PV Integrated Rotating Overhangs for US Residential Buildings
,”
Renewable Energy
,
174
, pp.
835
849
.
24.
Krarti
,
M.
,
2021
, “
Evaluation of PV Integrated Sliding-Rotating Overhangs for US Apartment Buildings
,”
Appl. Energy
,
293
, p.
116942
.
25.
Nielsen
,
M. V.
,
Svendsen
,
S.
, and
Jensen
,
L. B.
,
2011
, “
Quantifying the Potential of Automated Dynamic Solar Shading in Office Buildings Through Integrated Simulations of Energy and Daylight
,”
Sol. Energy
,
85
(
5
), pp.
757
768
.
26.
Kim
,
H.
, and
Clayton
,
M. J.
,
2020
, “
Parametric Behavior Maps: A Method for Evaluating the Energy Performance of Climate-Adaptive Building Envelopes
,”
Energy Build.
,
219
, p.
110020
.
27.
Hammad
,
F.
, and
Abu-Hijleh
,
B.
,
2010
, “
The Energy Savings Potential of Using Dynamic External Louvers in an Office Building
,”
Energy Build.
,
42
(
10
), pp.
1888
1895
.
28.
Krarti
,
M.
,
2022
, “
A Comparative Energy Analysis of Dynamic External Shadings for Office Buildings
,”
J. Eng. Sustain. Build. Cities
,
3
(
2
), p.
021001
.
29.
Wittwer
,
V.
,
Datz
,
M.
,
Ell
,
J.
,
Georg
,
A.
,
Graf
,
W.
, and
Walze
,
G.
,
2004
, “
Gasochromic Windows
,”
Sol. Energy Mater. Sol. Cells
,
84
(
1–4
), pp.
305
314
.
30.
Nundy
,
S.
, and
Ghosh
,
A.
,
2019
, “
Thermal and Visual Comfort Analysis of Adaptive Vacuum Integrated Switchable Suspended Particle Device Window for Temperate Climate
,”
Renewable Energy
,
156
, pp.
1361
1372
.
31.
Granqvist
,
C. G.
,
Arvizu
,
M. A.
,
Pehlivan
,
B. I.
,
Qu
,
H.-Y.
,
Wen
,
R.-T.
, and
Niklasson
,
G. A.
,
2018
, “
Electrochromic Materials and Devices for Energy Efficiency and Human Comfort in Buildings: A Critical Review
,”
Electrochim. Acta
,
259
, pp.
1170
1182
.
32.
Piccolo
,
A.
, and
Simone F
,
F.
,
2009
, “
Effect of Switchable Glazing on Discomfort Glare From Windows
,”
Build. Environ.
,
44
(
6
), pp.
1171
1180
.
33.
Aburas
,
M.
,
Soebarto
,
V.
,
Williamson
,
T.
,
Liang
,
R.
,
Ebendorff-Heidepriem
,
H.
, and
Wu
,
Y.
,
2019
, “
Thermochromic Smart Window Technologies for Building Application: A Review
,”
Appl. Energy
,
255
, p.
113522
.
34.
Long
,
L.
, and
Ye
,
Y.
,
2014
, “
How to be Smart and Energy Efficient: A General Discussion on Thermochromic Windows
,”
Sci. Rep.
,
4
(
1
), p.
6427
.
35.
Tällberg
,
R.
,
Jelle
,
B. P.
,
Loonen
,
R.
,
Gao
,
T.
, and
Hamdy
,
M.
,
2019
, “
Comparison of the Energy Saving Potential of Adaptive and Controllable Smart Windows: A State-of-the-Art Review and Simulation Studies of Thermochromic, Photochromic and Electrochromic Technologies
,”
Sol. Energy Mater. Sol. Cells
,
200
, p.
109828
.
36.
Casini
,
M.
,
2018
, “
Active Dynamic Windows for Buildings: A Review
,”
Renewable Energy
,
119
, pp.
923
934
.
37.
Krarti
,
M.
,
2022
, “
Performance of Smart Glazed Overhang Systems for US Residential Buildings
,”
Build. Environ.
,
208
, p.
108634
.
38.
Costanzo
,
V.
, and
Donn
,
M.
,
2017
, “
Thermal and Visual Comfort Assessment of Natural Ventilated Office Buildings in Europe and North America
,”
Energy Build.
,
140
, pp.
210
223
.
39.
Chlela
,
F.
,
2008
, “
Développement D’une Méthodologie de Conception de Bâtiments à Basse Consommation D’énergie
,”
Thèse de Doctorat
,
l'Université de La Rochelle
.
40.
Makhour
,
A.
,
2021
, “
Étude Expérimentale des Performances énergétiques D’une Fenêtre Pariétodynamique équipée D’un Vitrage Chauffant
,”
Thèse de Doctorat
,
l'Université de La Rochelle
.
41.
Krarti
,
M.
, and
Deneuville
,
A.
,
2015
, “
Comparative Evaluation of Optimal Energy Efficiency Designs for French and US Office Buildings
,”
Energy Build.
,
93
, pp.
332
344
.
42.
IEA
,
2022
, “
Future of Heat Pumps
,”
World Energy Outlook Special Report; International Energy Agency, Paris, France
. http://www.iea.org.
43.
Meldem
,
R.
, and
Winkelmann
,
F.
,
1998
, “
Comparison of DOE-2 With Temperature Measurements in the Pala Test Houses
,”
Energy Build.
,
27
(
1
), pp.
69
81
.
44.
Loutzenhiser
,
P. G.
,
Maxwell
,
G. M.
, and
Manz
,
H.
,
2007
, “
An Empirical Validation of the Daylighting Algorithms and Associated Interactions in Building Energy Simulation Programs Using Various Shading Devices and Windows
,”
Energy
,
32
(
10
), pp.
1855
1870
.
45.
Hassan
,
M. A.
,
Shebl
,
S. S.
, and
Ibrahim
,
E. A.
,
2011
, “
Modeling and Validation of the Thermal Performance of an Affordable, Energy Efficient, Healthy Dwelling Unit
,”
Build. Simul.
,
4
(
3
), pp.
255
262
.
46.
Strand
,
M. T.
,
Hernandez
,
T. S.
,
Danner
,
M. G.
,
Yeang
,
A. L.
,
Jarvey
,
N.
,
Barile
,
C. J.
, and
McGehee
,
M. D.
,
2021
, “
Polymer Inhibitors Enable > 900 cm2 Dynamic Windows Based on Reversible Metal Electrodeposition With High Solar Modulation
,”
Nat. Energy
,
6
(
5
), pp.
546
554
.
47.
CEREMA
,
2022
, “
Guide RE 2020, Règlementation Environnementale
,”
Ministère de la Transition Écologique
, Paris, France.
48.
OID
,
2021
, “
Baromètre de la Performance énergétique Environnementale des Bâtiments
,” Observatoire de l’immobilier Durable, Paris, France.
You do not currently have access to this content.