Abstract
The study aims to analyze the patterns of home appliance use and energy consumption among Moroccan consumers using the MORED dataset. Machine learning algorithms and data mining techniques are applied to understand consumer behavior in terms of energy usage. The results provide insights into the inter-appliance association and peak hours, which will be used to design an Energy Demand Management System (EDMS) for Moroccan buildings in the future. The purpose of this research is to support the development of an effective EDMS and to encourage end-user involvement in energy management in Morocco.
Issue Section:
Research Papers
References
1.
IEA
, 2019
, “Energy Policies Beyond IEA Countries: Morocco 2019
,” IEA, Paris, https://www.iea.org/reports/energy-policies-beyond-iea-countries-morocco-20192.
Jones
, J. S.
, 2022
, “Smart Grid Research Centre Launched in Morocco
.” https://www.smart-energy.com/policy-regulation/morocco-must-invest-30-bill3.
Gellings
, C. W.
, and Chamberlin
, J. H.
, 1987
, Demand-Side Management: Concepts and Methods
, The Fairmont Press Inc.
, Lilburn, GA
.4.
Baharlouei
, Z.
, Hashemi
, M.
, Narimani
, H.
, and Mohsenian-Rad
, H.
, 2013
, “Achieving Optimality and Fairness in Autonomous Demand Response: Benchmarks and Billing Mechanisms
,” IEEE Trans. Smart Grid
, 4
(2
), pp. 968
–975
. 5.
Çakmak
, R.
, and Hakkı Altaş
, İ.
, 2020
, “A Novel Billing Approach for Fair and Effective Demand Side Management: Appliance Level Billing (Applebill)
,” Int. J. Electr. Power Energy Syst.
, 121
(1
), p. 106062
. 6.
Schweizer
, D.
, Zehnder
, M.
, Wache
, H.
, Witschel
, H.-F.
, Zanatta
, D.
, and Rodriguez
, M.
, 2015
, “Using Consumer Behavior Data to Reduce Energy Consumption in Smart Homes: Applying Machine Learning to Save Energy Without Lowering Comfort of Inhabitants
,” 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)
, Miami, FL
, Dec. 9–11
, pp. 1123
–1129
.7.
Sharda
, S.
, Singh
, M.
, and Sharma
, K.
, 2021
, “Demand Side Management Through Load Shifting in IoT Based Hems: Overview, Challenges and Opportunities
,” Sustain. Cities Soc.
, 65
(3
), p. 102517
. 8.
Babaei
, M.
, Abazari
, A.
, Soleymani
, M. M.
, Ghafouri
, M.
, Muyeen
, S.
, and Beheshti
, M. T.
, 2021
, “A Data-Mining Based Optimal Demand Response Program for Smart Home With Energy Storages and Electric Vehicles
,” J. Energy Stor.
, 36
(14
), p. 102407
. 9.
Niharika
, N.
, and Mukherjee
, V.
, 2018
, “Day-Ahead Demand Side Management Using Symbiotic Organisms Search Algorithm
,” IET Gen. Transmiss. Distrib.
, 12
, pp. 3487
–3494
. 10.
Kousksou
, T.
, Allouhi
, A.
, Belattar
, M.
, Jamil
, A.
, El Rhafiki
, T.
, Arid
, A.
, and Zeraouli
, Y.
, 2015
, “Renewable Energy Potential and National Policy Directions for Sustainable Development in Morocco
,” Renew. Sustain. Energy Rev.
, 47
, pp. 46
–57
. 11.
Han
, J.
, Pei
, J.
, and Yin
, Y.
, 2000
, “Mining Frequent Patterns Without Candidate Generation
,” SIGMOD Rec.
, 29
(2
), pp. 1
–12
. 12.
Celik
, B.
, Roche
, R.
, Suryanarayanan
, S.
, Bouquain
, D.
, and Miraoui
, A.
, 2017
, “Electric Energy Management in Residential Areas Through Coordination of Multiple Smart Homes
,” Renew. Sustain. Energy Rev.
, 80
, pp. 260
–275
. 13.
Kim
, H.
, Choi
, H.
, Kang
, H.
, An
, J.
, Yeom
, S.
, and Hong
, T.
, 2021
, “A Systematic Review of the Smart Energy Conservation System: From Smart Homes to Sustainable Smart Cities
,” Renew. Sustain. Energy Rev.
, 140
, p. 110755
. 14.
Malla
, S.
, 2013
, “Household Energy Consumption Patterns and Its Environmental Implications: Assessment of Energy Access and Poverty in Nepal
,” Energy Policy
, 61
(C
), pp. 990
–1002
. 15.
Gouveia
, J.
, Seixas
, J.
, Luo
, S.
, Bilo
, N.
, and Valentim
, A.
, 2015
, “Understanding Electricity Consumption Patterns in Households Through Data Fusion of Smart Meters and Door to Door Surveys
,” ECEEE 2015 Summer Study: Climate Change and Sustainable Development Policies, Hyeres, France
, June 1–6
.16.
Yue
, T.
, Long
, R.
, and Chen
, H.
, 2013
, “Factors Influencing Energy-Saving Behavior of Urban Households in Jiangsu Province
,” Energy Policy
, 62
, pp. 665
–675
. 17.
Park
, E.
, and Kwon
, S. J.
, 2017
, “What Motivations Drive Sustainable Energy-Saving Behavior?: An Examination in South Korea
,” Renew. Sustain. Energy Rev.
, 79
(C
), pp. 494
–502
. 18.
Singh
, S.
, Yassine
, A.
, and Benlamri
, R.
, 2019
, “Consumer Segmentation: Improving Energy Demand Management Through Households Socio-analytics
,” 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)
, Fukuoka, Japan
, Aug. 5–8
, pp. 1038
–1045
.19.
Rai
, V.
, and Douglas
, A.
, 2016
, “Agent-Based Modelling of Consumer Energy Choices
,” Nat. Clim. Change
, 6
(6
), pp. 556
–562
. 20.
Yu
, B.
, and Zhang
, J.
, 2015
, “Modeling Household Energy Consumption Behavior: A Comparative Analysis
,” Transp. Res. D: Transp. Environ.
, 39
, pp. 126
–140
. 21.
Adua
, L.
, 2020
, “Reviewing the Complexity of Energy Behavior: Technologies, Analytical Traditions, and Household Energy Consumption Data in the United States
,” Energy Res. Soc. Sci.
, 59
, p. 101289
. 22.
Su
, Y.-W.
, 2019
, “Residential Electricity Demand in Taiwan: Consumption Behavior and Rebound Effect
,” Energy Policy
, 124
, pp. 36
–45
. 23.
Wolske
, K.
, Gillingham
, K.
, and Schultz
, P.
, 2020
, “Peer Influence on Household Energy Behaviours
,” Nat. Energy
, 5
(3
), pp. 202
–212
. 24.
Ahajjam
, M. A.
, Bonilla Licea
, D.
, Essayeh
, C.
, Ghogho
, M.
, and Kobbane
, A.
, 2020
, “MORED: A Moroccan Buildings’ Electricity Consumption Dataset
,” Energies
, 13
(24
), p. 6737
. 25.
Osama
, S.
, Alfonse
, M.
, and Salem
, A.-B. M.
, 2019
, “Mining Temporal Patterns to Discover Inter-Appliance Associations Using Smart Meter Data
,” Big Data Cogn. Comput.
, 3
(2
), p. 20
. Copyright © 2023 by ASME
You do not currently have access to this content.