Abstract

The study aims to analyze the patterns of home appliance use and energy consumption among Moroccan consumers using the MORED dataset. Machine learning algorithms and data mining techniques are applied to understand consumer behavior in terms of energy usage. The results provide insights into the inter-appliance association and peak hours, which will be used to design an Energy Demand Management System (EDMS) for Moroccan buildings in the future. The purpose of this research is to support the development of an effective EDMS and to encourage end-user involvement in energy management in Morocco.

References

1.
IEA
,
2019
, “
Energy Policies Beyond IEA Countries: Morocco 2019
,” IEA, Paris, https://www.iea.org/reports/energy-policies-beyond-iea-countries-morocco-2019
2.
Jones
,
J. S.
,
2022
, “
Smart Grid Research Centre Launched in Morocco
.” https://www.smart-energy.com/policy-regulation/morocco-must-invest-30-bill
3.
Gellings
,
C. W.
, and
Chamberlin
,
J. H.
,
1987
,
Demand-Side Management: Concepts and Methods
,
The Fairmont Press Inc.
,
Lilburn, GA
.
4.
Baharlouei
,
Z.
,
Hashemi
,
M.
,
Narimani
,
H.
, and
Mohsenian-Rad
,
H.
,
2013
, “
Achieving Optimality and Fairness in Autonomous Demand Response: Benchmarks and Billing Mechanisms
,”
IEEE Trans. Smart Grid
,
4
(
2
), pp.
968
975
.
5.
Çakmak
,
R.
, and
Hakkı Altaş
,
İ.
,
2020
, “
A Novel Billing Approach for Fair and Effective Demand Side Management: Appliance Level Billing (Applebill)
,”
Int. J. Electr. Power Energy Syst.
,
121
(
1
), p.
106062
.
6.
Schweizer
,
D.
,
Zehnder
,
M.
,
Wache
,
H.
,
Witschel
,
H.-F.
,
Zanatta
,
D.
, and
Rodriguez
,
M.
,
2015
, “
Using Consumer Behavior Data to Reduce Energy Consumption in Smart Homes: Applying Machine Learning to Save Energy Without Lowering Comfort of Inhabitants
,”
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)
,
Miami, FL
,
Dec. 9–11
, pp.
1123
1129
.
7.
Sharda
,
S.
,
Singh
,
M.
, and
Sharma
,
K.
,
2021
, “
Demand Side Management Through Load Shifting in IoT Based Hems: Overview, Challenges and Opportunities
,”
Sustain. Cities Soc.
,
65
(
3
), p.
102517
.
8.
Babaei
,
M.
,
Abazari
,
A.
,
Soleymani
,
M. M.
,
Ghafouri
,
M.
,
Muyeen
,
S.
, and
Beheshti
,
M. T.
,
2021
, “
A Data-Mining Based Optimal Demand Response Program for Smart Home With Energy Storages and Electric Vehicles
,”
J. Energy Stor.
,
36
(
14
), p.
102407
.
9.
Niharika
,
N.
, and
Mukherjee
,
V.
,
2018
, “
Day-Ahead Demand Side Management Using Symbiotic Organisms Search Algorithm
,”
IET Gen. Transmiss. Distrib.
,
12
, pp.
3487
3494
.
10.
Kousksou
,
T.
,
Allouhi
,
A.
,
Belattar
,
M.
,
Jamil
,
A.
,
El Rhafiki
,
T.
,
Arid
,
A.
, and
Zeraouli
,
Y.
,
2015
, “
Renewable Energy Potential and National Policy Directions for Sustainable Development in Morocco
,”
Renew. Sustain. Energy Rev.
,
47
, pp.
46
57
.
11.
Han
,
J.
,
Pei
,
J.
, and
Yin
,
Y.
,
2000
, “
Mining Frequent Patterns Without Candidate Generation
,”
SIGMOD Rec.
,
29
(
2
), pp.
1
12
.
12.
Celik
,
B.
,
Roche
,
R.
,
Suryanarayanan
,
S.
,
Bouquain
,
D.
, and
Miraoui
,
A.
,
2017
, “
Electric Energy Management in Residential Areas Through Coordination of Multiple Smart Homes
,”
Renew. Sustain. Energy Rev.
,
80
, pp.
260
275
.
13.
Kim
,
H.
,
Choi
,
H.
,
Kang
,
H.
,
An
,
J.
,
Yeom
,
S.
, and
Hong
,
T.
,
2021
, “
A Systematic Review of the Smart Energy Conservation System: From Smart Homes to Sustainable Smart Cities
,”
Renew. Sustain. Energy Rev.
,
140
, p.
110755
.
14.
Malla
,
S.
,
2013
, “
Household Energy Consumption Patterns and Its Environmental Implications: Assessment of Energy Access and Poverty in Nepal
,”
Energy Policy
,
61
(
C
), pp.
990
1002
.
15.
Gouveia
,
J.
,
Seixas
,
J.
,
Luo
,
S.
,
Bilo
,
N.
, and
Valentim
,
A.
,
2015
, “
Understanding Electricity Consumption Patterns in Households Through Data Fusion of Smart Meters and Door to Door Surveys
,” ECEEE 2015 Summer Study: Climate Change and Sustainable Development Policies,
Hyeres, France
,
June 1–6
.
16.
Yue
,
T.
,
Long
,
R.
, and
Chen
,
H.
,
2013
, “
Factors Influencing Energy-Saving Behavior of Urban Households in Jiangsu Province
,”
Energy Policy
,
62
, pp.
665
675
.
17.
Park
,
E.
, and
Kwon
,
S. J.
,
2017
, “
What Motivations Drive Sustainable Energy-Saving Behavior?: An Examination in South Korea
,”
Renew. Sustain. Energy Rev.
,
79
(
C
), pp.
494
502
.
18.
Singh
,
S.
,
Yassine
,
A.
, and
Benlamri
,
R.
,
2019
, “
Consumer Segmentation: Improving Energy Demand Management Through Households Socio-analytics
,”
2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)
,
Fukuoka, Japan
,
Aug. 5–8
, pp.
1038
1045
.
19.
Rai
,
V.
, and
Douglas
,
A.
,
2016
, “
Agent-Based Modelling of Consumer Energy Choices
,”
Nat. Clim. Change
,
6
(
6
), pp.
556
562
.
20.
Yu
,
B.
, and
Zhang
,
J.
,
2015
, “
Modeling Household Energy Consumption Behavior: A Comparative Analysis
,”
Transp. Res. D: Transp. Environ.
,
39
, pp.
126
140
.
21.
Adua
,
L.
,
2020
, “
Reviewing the Complexity of Energy Behavior: Technologies, Analytical Traditions, and Household Energy Consumption Data in the United States
,”
Energy Res. Soc. Sci.
,
59
, p.
101289
.
22.
Su
,
Y.-W.
,
2019
, “
Residential Electricity Demand in Taiwan: Consumption Behavior and Rebound Effect
,”
Energy Policy
,
124
, pp.
36
45
.
23.
Wolske
,
K.
,
Gillingham
,
K.
, and
Schultz
,
P.
,
2020
, “
Peer Influence on Household Energy Behaviours
,”
Nat. Energy
,
5
(
3
), pp.
202
212
.
24.
Ahajjam
,
M. A.
,
Bonilla Licea
,
D.
,
Essayeh
,
C.
,
Ghogho
,
M.
, and
Kobbane
,
A.
,
2020
, “
MORED: A Moroccan Buildings’ Electricity Consumption Dataset
,”
Energies
,
13
(
24
), p.
6737
.
25.
Osama
,
S.
,
Alfonse
,
M.
, and
Salem
,
A.-B. M.
,
2019
, “
Mining Temporal Patterns to Discover Inter-Appliance Associations Using Smart Meter Data
,”
Big Data Cogn. Comput.
,
3
(
2
), p.
20
.
You do not currently have access to this content.