Abstract

Smart cities will need collections of buildings that are responsive to the variation in renewable energy generation. However, an unprecedented level of renewable energy being added to the power grid compounds the level of uncertainties in making decisions for reliable grid operation. Making autonomous decisions regarding demand management requires consideration of uncertainty in the information available for planning and executing operations. Thus, this paper aims to quantitatively analyze the performance of supervisory controllers for multiple grid-integrative buildings with thermal energy storage depending on the quality of information available. Day-ahead planning and real-time model predictive controllers were developed and compared across 50 validation scenarios when given perfect information, deterministic forecasts, and stochastic forecasts. Despite the relatively large uncertainty in the stochastic forecasts, marked improvements were observed when a stochastic optimization was solved for both the day-ahead and real-time problems. This observation underscores the need for continued development in the area of stochastic control and decision-making for future grid-interactive buildings and improved energy management of smart cities.

References

1.
Transforming Our World
,
2015
, “
The 2030 Agenda for Sustainable Development
,” Tech. Rep., United Nations, https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981
2.
Silva
,
B. N.
,
Khan
,
M.
, and
Han
,
K.
,
2018
, “
Towards Sustainable Smart Cities: A Review of Trends, Architectures, Components, and Open Challenges in Smart Cities
,”
Sustain. Cities Soc.
,
38
, pp.
697
713
.
3.
Chen
,
T. M.
,
2010
, “
Smart Grids, Smart Cities Need Better Networks [Editor’s Note]
,”
IEEE Netw.
,
24
(
2
), pp.
2
3
.
4.
Atasoy
,
T.
,
Akınç
,
H. E.
, and
Erçin
,
Z.
,
2015
, “
An Analysis on Smart Grid Applications and Grid Integration of Renewable Energy Systems in Smart Cities
,”
2015 International Conference on Renewable Energy Research and Applications (ICRERA)
,
Palermo, Italy
, pp.
547
550
.
5.
Angelina LaRose
,
S. N.
,
2021
, “
Annual Energy Outlook 2021 With Projections to 2050
,” Tech. Rep., The U.S. Energy Information Administration (EIA).
6.
Zeng
,
B.
,
Zhang
,
J.
,
Yang
,
X.
,
Wang
,
J.
,
Dong
,
J.
, and
Zhang
,
Y.
,
2014
, “
Integrated Planning for Transition to Low-Carbon Distribution System With Renewable Energy Generation and Demand Response
,”
IEEE Trans. Power Syst.
,
29
(
3
), pp.
1153
1165
.
7.
Cara Carmichael
,
R. E.
, and
Taylor
,
E.
,
2021
, “
Grid-Interactive Efficient Buildings Made Easy: A GSA Building Manager’s Guide to Low- and No-Cost GEB Measures
,” Tech. Rep., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office, https://rmi.org/insight/grid-interactive-efficient-buildings-made-easy/
8.
Aduda
,
K.
,
Labeodan
,
T.
,
Zeiler
,
W.
, and
Boxem
,
G.
,
2017
, “
Demand Side Flexibility Coordination in Office Buildings: A Framework and Case Study Application
,”
Sustain. Cities Soc.
,
29
, pp.
139
158
.
9.
Mbungu
,
N. T.
,
Bansal
,
R. C.
,
Naidoo
,
R.
,
Miranda
,
V.
, and
Bipath
,
M.
,
2018
, “
An Optimal Energy Management System for a Commercial Building With Renewable Energy Generation Under Real-Time Electricity Prices
,”
Sustain. Cities Soc.
,
41
, pp.
392
404
.
10.
Mirakhorli
,
A.
, and
Dong
,
B.
,
2018
, “
Market and Behavior Driven Predictive Energy Management for Residential Buildings
,”
Sustain. Cities Soc.
,
38
, pp.
723
735
.
11.
Connor
,
P.M.
,
Axon
,
C.J.
,
Xenias
,
D.
, and
Balta-Ozkan
,
N.
,
2018
, “
Sources of Risk and Uncertainty in UK Smart Grid Deployment: An Expert Stakeholder Analysis
,”
Energy
,
161
(
15
), pp.
1
9
.
12.
Jankauskas
,
V.
,
Rudzkis
,
P.
, and
Kanopka
,
A.
,
2014
, “
Risk Factors for Stakeholders in Renewable Energy Investments
,”
Energetika
,
60
(
2
), pp.
113
124
.
13.
Jufri
,
F.
,
Widiputra
,
V.
, and
Jung
,
J.
,
2019
, “
State-of-the-Art Review on Power Grid Resilience to Extreme Weather Events: Definitions, Frameworks, Quantitative Assessment Methodologies, and Enhancement Strategies
,”
Appl. Energy
,
239
(
1
), pp.
1049
1065
.
14.
Yu
,
M. G.
, and
Pavlak
,
G. S.
,
2020
, “
Two-Stage Stochastic Planning for Control of Building Thermal Energy Storage Portfolios With Transactive Controls
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1-3
, pp.
2339
2344
.
15.
Yu
,
M. G.
, and
Pavlak
,
G. S.
,
2021
, “
Assessing the Performance of Uncertainty-Aware Transactive Controls for Building Thermal Energy Storage Systems
,”
Appl. Energy
,
282
(
15
), p.
116103
.
16.
Venkatesh Chinde Adam Hirsch
,
W. L.
, and
Florita
,
A. R.
,
2021
, “
Simulating Dispatchable Grid Services Provided by Flexible Building Loads: State of the Art and Needed Building Energy Modeling Improvements
,”
Build. Simul.
,
32
(
3
), pp.
441
462
.
17.
Zhang
,
L.
,
Wen
,
J.
,
Li
,
Y.
,
Chen
,
J.
,
Ye
,
Y.
,
Fu
,
Y.
, and
Livingood
,
W.
,
2021
, “
A Review of Machine Learning in Building Load Prediction
,”
Appl. Energy
,
285
(
1
), p.
116452
.
18.
Ahmad
,
A. S.
,
Hassan
,
M. Y.
,
Abdullah
,
M. P.
,
Rahman
,
H. A.
,
Hussin
,
F.
,
Abdullah
,
H.
, and
Saidur
,
R.
,
2014
, “
A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
102
109
.
19.
Ahmad
,
T.
, and
Chen
,
H.
,
2020
, “
A Review on Machine Learning Forecasting Growth Trends and Their Real-Time Applications in Different Energy Systems
,”
Sustain. Cities Soc.
,
54
, p.
102010
.
20.
Yang
,
R.
,
Hao
,
J.
,
Jiang
,
H.
, and
Jin
,
X.
,
2020
, “
Machine-Learning-Driven, Site-Specific Weather Forecasting for Grid-Interactive Efficient Buildings
,” Preprint, https://www.osti.gov/biblio/1669587
21.
Chan
,
S.
,
Tsui
,
K.
,
Wu
,
H.
,
Hou
,
Y.
,
Wu
,
Y. C.
, and
Wu
,
F. F.
,
2012
, “
Load/Price Forecasting and Managing Demand Response for Smart Grids: Methodologies and Challenges
,”
IEEE Signal Process. Mag.
,
29
(
5
), pp.
68
85
.
22.
Huang
,
C. M.
,
Huang
,
C. J.
, and
Wang
,
M. L.
,
2005
, “
A Particle Swarm Optimization to Identifying the ARMAX Model for Short-Term Load Forecasting
,”
IEEE Trans. Power Syst.
,
20
(
2
), pp.
1126
1133
.
23.
Guo
,
Q.
,
Nojavan
,
S.
,
Lei
,
S.
, and
Liang
,
X.
,
2021
, “
Economic-Environmental Analysis of Renewable-Based Microgrid Under a CVAR-Based Two-Stage Stochastic Model With Efficient Integration of Plug-In Electric Vehicle and Demand Response
,”
Sustain. Cities Soc.
,
75
, p.
103276
.
24.
Pan
,
Z.
,
Yu
,
T.
,
Li
,
J.
,
Qu
,
K.
,
Chen
,
L.
,
Yang
,
B.
, and
Guo
,
W.
,
2020
, “
Stochastic Transactive Control for Electric Vehicle Aggregators Coordination: A Decentralized Approximate Dynamic Programming Approach
,”
IEEE Trans. Smart Grid
,
11
(
5
), pp.
1
1
.
25.
Liu
,
Z.
,
Wu
,
Q.
,
Shahidehpour
,
M.
,
Li
,
C.
,
Huang
,
S.
, and
Wei
,
W.
,
2019
, “
Transactive Real-Time Electric Vehicle Charging Management for Commercial Buildings With PV On-Site Generation
,”
IEEE Trans. Smart Grid
,
10
(
5
), pp.
4939
4950
.
26.
Mehrjerdi
,
H.
, and
Rakhshani
,
E.
,
2019
, “
Optimal Operation of Hybrid Electrical and Thermal Energy Storage Systems Under Uncertain Loading Condition
,”
Appl. Therm. Eng.
,
160
, p.
114094
.
27.
Wanjiru
,
E. M.
,
Sichilalu
,
S. M.
, and
Xia
,
X.
,
2017
, “
Model Predictive Control of Heat Pump Water Heater-Instantaneous Shower Powered With Integrated Renewable-Grid Energy Systems
,”
Appl. Energy
,
204
(
15
), pp.
1333
1346
.
28.
Krishnan Prakash
,
A.
,
Zhang
,
K.
,
Gupta
,
P.
,
Blum
,
D.
,
Marshall
,
M.
,
Fierro
,
G.
,
Alstone
,
P.
,
Zoellick
,
J.
,
Brown
,
R.
, and
Pritoni
,
M.
,
2020
, “
Solar+ Optimizer: A Model Predictive Control Optimization Platform for Grid Responsive Building Microgrids
,”
Energies
,
13
(
12
), p.
3093
.
29.
Gholamzadehmir
,
M.
,
Del Pero
,
C.
,
Buffa
,
S.
,
Fedrizzi
,
R.
, and
Aste
,
N.
,
2020
, “
Adaptive-Predictive Control Strategy for HVAC Systems in Smart Buildings—A Review
,”
Sustain. Cities Soc.
,
63
, p.
102480
.
30.
Kumar
,
R.
,
Wenzel
,
M.
,
ElBsat
,
M.
,
Risbeck
,
M.
,
Drees
,
K.
, and
Zavala
,
V.
,
2020
, “
Stochastic Model Predictive Control for Central HVAC Plants
,”
J. Process Control
,
90
, pp.
1
17
.
31.
Zhang
,
Y.
,
Meng
,
F.
,
Wang
,
R.
,
Zhu
,
W.
, and
Zeng
,
X. J.
,
2018
, “
A Stochastic MPC Based Approach to Integrated Energy Management in Microgrids
,”
Sustain. Cities Soc.
,
41
, pp.
349
362
.
32.
Garifi
,
K.
,
Baker
,
K.
,
Touri
,
B.
, and
Christensen
,
D.
,
2018
, “
Stochastic Model Predictive Control for Demand Response in a Home Energy Management System
,”
2018 IEEE Power Energy Society General Meeting (PESGM)
,
Portland, OR
, pp.
1
5
.
33.
Ferrarini
,
L.
,
Mantovani
,
G.
, and
Costanzo
,
G. T.
,
2014
, “
A Distributed Model Predictive Control Approach for the Integration of Flexible Loads, Storage and Renewables
,”
2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)
,
Istanbul, Turkey
, pp.
1700
1705
.
34.
Chen
,
Y.
, and
Hu
,
M.
,
2019
, “
Swarm Intelligence-Based Distributed Stochastic Model Predictive Control for Transactive Operation of Networked Building Clusters
,”
Energy Build.
,
198
(
1
), pp.
207
215
.
35.
Henze
,
G.
,
Felsmann
,
C.
, and
Knabe
,
G.
,
2004
, “
Evaluation of Optimal Control for Active and Passive Building Thermal Storage
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
173
183
.
36.
Luetkepohl
,
H.
,
2005
,
The New Introduction to Multiple Time Series Analysis
,
Springer Science & Business Media
,
Berlin, Germany
.
37.
Seabold
,
S.
, and
Perktold
,
J.
,
2010
, “
Statsmodels: Econometric and Statistical Modeling With Python
,”
Proceedings of the 9th Python in Science Conference
,
Austin, TX
.
38.
Energy Market
,
2019
, https://www.pjm.com/markets-and-operations/energy.aspx, Accessed October 15, 2021.
39.
U.S. Department of Energy
,
2019
, “
Energyplus Engineering Reference. The Reference to EnergyPlus Calculations
.”
40.
Henze
,
G. P.
,
Dodier
,
R. H.
, and
Krarti
,
M.
,
1997
, “
Development of a Predictive Optimal Controller for Thermal Energy Storage Systems
,”
HVAC&R Res.
,
3
(
3
), pp.
233
264
.
41.
Yu
,
M. G.
,
Pavlak
,
G. S.
, and
Shanbhag
,
U. V.
,
2022
, “
Uncertainty-Aware Optimal Dispatch of Building Thermal Storage Portfolios Via Smoothed Variance-Reduced Accelerated Gradient Methods
,”
J. Energy Storage
,
51
, p.
104405
.
You do not currently have access to this content.