Abstract

The insulated glass unit (IGU) system is widely used in the Northern Hemisphere to improve the energy performance of buildings and the thermal comfort of their occupants. However, it has been introduced in the Brazilian market without a proper thermal assessment. Proper glass choice is essential to reduce energy consumption, as the most intense heat exchange occurs through the windows. This research aimed to investigate the influence of IGU use on conditioned office buildings’ energy performance for nine different climates in Brazil, including tropical (Aw, Af, and As) and temperate (Cfa and Cfb) climates. The energy consumption using air-filled IGU was compared to its non-insulated version through computer simulation in EnergyPlus. This sample demonstrated that IGU could generate annual savings in cooling consumption in tropical climates (up to 2.8%) when the outside temperature is constantly higher than the thermostat temperature. However, IGU models resulted in annual cooling consumption up to 9.3% higher in temperate climates by hindering the thermal load dissipation through the façade. The observed sample demonstrated that the IGU could inhibit the dissipation of the indoor thermal load through the façade, which increases energy consumption for cooling compared to models with the same glass but non-insulated. Either in the tropical or the temperate climates analyzed, the use of IGU seems not to be the ideal approach to improve the thermal performance and reduce the cooling energy consumption of highly glazed office buildings in Brazil.

References

1.
Kalmár
,
F.
,
2016
, “
Summer Operative Temperatures in Free Running Existing Buildings With High Glazed Ratio of the Facades
,”
J. Build. Eng.
,
6
, pp.
236
242
.
2.
Gasparella
,
A.
,
Pernigotto
,
G.
,
Cappelletti
,
F.
,
Romagnoni
,
P.
, and
Baggio
,
P.
,
2011
, “
Analysis and Modelling of Window and Glazing Systems Energy Performance for a Well Insulated Residential Building
,”
Energy Build.
,
43
(
4
), pp.
1030
1037
.
3.
Trapano
,
P. d.
, and
Bastos
,
L. E. G.
,
2010
, “
Forma e qualidade ambiental: uma discussão sobre o uso do vidro em obras da arquitetura contemporânea
,”
XIII Encontro Nacional de Tecnologia Do Ambiente Construído
,
Canela
,
Oct. 6–8
.
4.
Huang
,
Y.
,
Niu
,
J.
, and
Chung
,
T.
,
2014
, “
Comprehensive Analysis on Thermal and Daylighting Performance of Glazing and Shading Designs on Office Building Envelope in Cooling-Dominant Climates
,”
Appl. Energy
,
134
, pp.
215
228
.
5.
Tzempelikos
,
A.
,
Bessoudo
,
M.
,
Athienitis
,
A. K.
, and
Zmeureanu
,
R.
,
2010
, “
Indoor Thermal Environmental Conditions Near Glazed Facades With Shading Devices—Part II: Thermal Comfort Simulation and Impact of Glazing and Shading Properties
,”
Build. Environ.
,
45
(
11
), pp.
2517
2525
.
6.
Zygmunt
,
M.
, and
Gawin
,
D.
,
2018
, “
Analysis of Energy Efficiency and Thermal Comfort for an Office Building Complex Located in Poland—A Case Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
415
(
1
), p.
012023
.
7.
Wen
,
L.
,
Hiyama
,
K.
, and
Koganei
,
M.
,
2017
, “
A Method for Creating Maps of Recommended Window-to-Wall Ratios to Assign Appropriate Default Values in Design Performance Modeling: A Case Study of a Typical Office Building in Japan
,”
Energy Build.
,
145
, pp.
304
317
.
8.
Pillar
,
Valério De Patta
,
1995
,
Clima e vegetação. UFRGS, Departamento de Botânica
, pp. 1–11, http://ecoqua.ecologia.ufrgs.br.
9.
Besen
,
P.
, and
Westphal
,
F. S.
,
2014
, “
Fachadas de vidro no Brasil: um estudo comparativo de viabilidade econômica
,”
XV Encontro Nacional de Tecnologia do Ambiente Construído
,
Maceió
,
Nov. 12–14
, pp.
964
973
.
10.
Tsagarakis
,
K. P.
,
Karyotakis
,
K.
, and
Zografakis
,
N.
,
2012
, “
Implementation Conditions for Energy Saving Technologies and Practices in Office Buildings: Part 2. Double Glazing Windows, Heating and Air-Conditioning
,”
Renew. Sustain. Energy Rev.
,
16
(
6
), pp.
3986
3998
.
11.
Kottek
,
M.
,
Grieser
,
J.
,
Beck
,
C.
,
Rudolf
,
B.
, and
Rubel
,
F.
,
2006
, “
World Map of the Köppen–Geiger Climate Classification Updated
,”
Meteorologische Zeitschrift
.
12.
Stegou-Sagia
,
A.
,
Antonopoulos
,
K.
,
Angelopoulou
,
C.
, and
Kotsiovelos
,
G.
,
2007
, “
The Impact of Glazing on Energy Consumption and Comfort
,”
Energy Conver. Manage.
,
48
(
11
), pp.
2844
2852
. .
13.
Poirazis
,
H.
,
Blomsterberg
,
Å
, and
Wall
,
M.
,
2008
, “
Energy Simulations for Glazed Office Buildings in Sweden
,”
Energy Build.
,
40
(
7
), pp.
1161
1170
.
14.
Jaber
,
S.
, and
Ajib
,
S.
,
2011
, “
Thermal and Economic Windows Design for Different Climate Zones
,”
Energy Build.
,
43
(
11
), pp.
3208
3215
.
15.
Ochoa
,
C. E.
,
Aries
,
M. B. C.
,
van Loenen
,
E. J.
, and
Hensen
,
J. L. M.
,
2012
, “
Considerations on Design Optimization Criteria for Windows Providing Low Energy Consumption and High Visual Comfort
,”
Appl. Energy
,
95
, pp.
238
245
.
16.
Lee
,
J. W.
,
Jung
,
H. J.
,
Park
,
J. Y.
,
Lee
,
J. B.
, and
Yoon
,
Y.
,
2013
, “
Optimization of Building Window System in Asian Regions by Analyzing Solar Heat Gain and Daylighting Elements
,”
Renew. Energy
,
50
, pp.
522
531
.
17.
Atzeri
,
A. M.
,
Cappelletti
,
F.
,
Tzempelikos
,
A.
, and
Gasparella
,
A.
,
2016
Comfort Metrics for an Integrated Evaluation of Buildings Performance
,”
Energy Build.
,
127
, pp.
411
424
.
18.
Berardi
,
U.
,
2019
, “
Light Transmittance Characterization and Energy-Saving Analysis of a New Selective Coating for In Situ Window Retrofit
,”
Sci. Technol. Built Environ.
,
25
(
9
), pp.
1
12
.
19.
Graiz
,
E.
, and
Al Azhari
,
W.
,
2019
, “
Energy Efficient Glass: A Way to Reduce Energy Consumption in Office Buildings in Amman (October 2018)
,”
IEEE Access
,
7
, pp.
61218
61225
.
20.
Chow
,
TT.
,
Li
,
C.
, and
Lin
,
Z.
,
2010
, “
Innovative Solar Windows for Cooling-Demand Climate
,”
Sol. Energy Mater. Sol. Cells
,
94
(
2
), pp.
212
220
.
21.
Andreis
,
C.
,
Besen
,
P.
, and
Westphal
,
F. S.
,
2014
, “
Desempenho energético de fachadas envidraçadas em climas brasileiros
,”
XV Encontro Nacional de Tecnologia do Ambiente Construído
,
Maceió
,
Nov. 12–14
, pp.
926
935
.
22.
Westphal
,
F. S.
, and
Andreis
,
C.
,
2016
, “
Influence of Glazed Façades on Energy Consumption for Air Conditioning of Office Buildings in Brazilian Climates
,”
J. Eng. Res. Appl.
,
6
(
11
), pp.
54
60
.
23.
Carvalho
,
M. M. Q.
,
la Rovere
,
E. L.
, and
Gonçalves
,
A. C. M.
,
2010
, “
Analysis of Variables That Influence Electric Energy Consumption in Commercial Buildings in Brazil
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
3199
3205
.
24.
Besen
,
P.
, and
Westphal
,
F. S.
,
2012
, “
Uso de vidro duplo e vidro laminado no Brasil: Avaliação do desempenho energético e conforto térmico por meio de simulação computacional
,”
XIV ENTAC: Encontro Nacional de Tecnologia do Ambiente Construído
,
Juiz de Fora
,
Oct. 29–31
, pp.
2820
2826
.
25.
Roriz
,
M.
,
2004
, “
ZBBR: Classificação Bioclimática dos Municípios Brasileiros
,” Software, https://labeee.ufsc.br/downloads/softwares/zbbr
26.
Köppen
,
W.
,
1918
, “
Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf
,”
Petermanns Geographische Mitteilungen
,
64
, pp.
193
203
.
27.
Pereira
,
E.
,
Martins
,
F.
,
Abreu
,
S.
, and
Rüther
,
R.
,
2006
, “Atlas Brasileiro de Energia Solar,” INPE, São José Dos Campos, 1a ed., pp.
1
60
.
28.
Lam
,
J. C.
, and
Hui
,
S. C. M.
,
1996
, “
Sensitivity Analysis of Energy Performance of Office Buildings
,”
Build. Environ.
,
31
(
1
), pp.
27
39
.
29.
ASHRAE
,
2007
, ANSI/ASHRAE/IESNA Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings. ASHRAE Inc., pp.
1
188
.
30.
INMETRO
,
2013
, “
Requisitos técnicos da qualidade para o nível de eficiência energética de edifÃcios comerciais, de serviços e públicos, RTQ-C
,” Rio de Janeiro.
31.
Bavaresco
,
M. V.
,
2016
, “
Influência da interação dos usuários com elementos internos de sombreamento na eficiência energética de edificações comerciais
,” Master Theses, Universidade Federal de Santa Catarina, Centro Tecnológico, Florianópolis, pp.
1
158
.
32.
ABNT
,
2008
, ABNT NBR 16401-1 Instalações de ar-condicionado—Sistemas centrais e unitários Parte 1: Projetos das instalações. Brasil.
33.
ISO
,
2005
, ISO 7730 Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, pp.
1
60
.
34.
LBNL
,
2016
, WINDOW v.7.4.14. Lawrence Berkeley National Laboratory. December.
You do not currently have access to this content.