Abstract

In this paper, the energy performance of dynamic instead of static shading devices is investigated for prototypical US office spaces. Specifically, six dynamic shading systems are considered to assess their ability to reduce heating and cooling thermal loads, total building energy use, and electrical peak demand. The most promising dynamic shading is the rotating overhang and is evaluated further using a wide range of design and operation conditions. It is found that rotating overhangs can provide effective and easily controllable dynamic shading systems for windows to reduce the energy consumption of US office buildings by up to 39% especially for mild US climates. Moreover, the rotating overhangs have the added benefit to support PV panels for on-site electricity generation. A series of sensitivity analysis results indicate that the performance of the dynamic external shading systems depends on its depth and orientation, the location climate, the window size, and the glazing type have significant impacts. For instance, the dynamic shading device can reduce annual heating and cooling energy end-use for an office space located in Boulder, CO, compared to no shading case by 19% for a window-to-wall ratio (WWR) of 15% and by 31% for a WWR of 30%.

References

1.
EIA
,
2020
, “Annual Energy Outlook 2020,” Technical Report by US Energy Information Administration, Washington, DC, https://www.eia.gov/outlooks/aeo/
2.
DOE
,
2020
, “Emerging Technologies Research and Development,” Research and Development Opportunities Report for Windows, Report for Building Technology Office, US Department of Energy, Washington, DC, https://www.energy.gov/sites/prod/files/2020/05/f74/bto-20200504_Draft_Windows_RDO.pdf
3.
Selkowitz
,
S.
,
Hart
,
R.
, and
Curcija
,
C.
,
2018
, “
Breaking the 20 Year Logjam to Better Insulating Windows
,”
Proceedings of ACEEE 2018 Summary Study on Energy Efficiency in Buildings
http://aceee.org/files/proceedings/2018/#/paper/event-data/p033
4.
DeForest
,
N.
,
Shehabi
,
A.
,
Selkowitz
,
S.
, and
Milliron
,
D. J.
,
2017
, “
A Comparative Energy Analysis of Three Electrochromic Glazing Technologies in Commercial and Residential Buildings
,”
Appl. Energy
,
192
, pp.
95
109
.
5.
Dussault
,
J. M.
, and
Gosselin
,
L.
,
2017
, “
Office Buildings With Electrochromic Windows: A Sensitivity Analysis of Design Parameters on Energy Performance, and Thermal and Visual Comfort
,”
Energy Build.
,
153
, pp.
50
62
.
6.
Piccolo
,
A.
,
Marino
,
C.
,
Nucara
,
A.
, and
Pietrafesa
,
M.
,
2018
, “
Energy Performance of an Electrochromic Switchable Glazing: Experimental and Computational Assessments
,”
Energy Build.
,
165
, pp.
390
398
.
7.
Kunwar
,
N.
,
Cetin
,
K. S.
, and
Passe
,
U.
,
2018
, “
Dynamic Shading in Buildings: A Review of Testing Methods and Recent Research Findings
,”
Curr. Sustainable Renewable Energy Rep.
,
5
(
1
), pp.
93
100
.
8.
David
,
M.
,
Donn
,
M.
,
Garde
,
F.
, and
Lenoir
,
A.
,
2011
, “
Assessment of the Thermal and Visual Efficiency of Solar Shades
,”
Build. Environ.
,
46
(
7
), pp.
1489
1496
.
9.
Tzempelikos
,
A.
,
2008
, “
A Review of Optical Properties of Shading Devices
,”
Adv. Build. Energy Res.
,
2
(
1
), pp.
211
239
.
10.
Lee
,
E. S.
, and
Tavil
,
A.
,
2007
, “
Energy and Visual Comfort Performance of Electro-Chromic Windows With Overhangs
,”
Build. Environ.
,
42
(
6
), pp.
2439
2449
.
11.
Tzempelikos
,
A.
, and
Athienitis
,
A. K.
,
2007
, “
The Impact of Shading Design and Control on Building Cooling and Lighting Demand
,”
Sol. Energy
,
81
(
3
), pp.
369
382
.
12.
Lee
,
E. S.
,
DiBartolomeo
,
D. L.
, and
Selkowitz
,
S. E.
,
1998
, “
Thermal and Daylighting Performance of an Automated Venetian Blind and Lighting System in a Full-Scale Private Office
,”
Energy Build.
,
29
(
1
), pp.
47
63
.
13.
Aldawoud
,
A.
,
2013
, “
Conventional Fixed Shading Devices in Comparison to an Electrochromic Glazing System in Hot, Dry Climate
,”
Energy Build.
,
59
, pp.
104
110
.
14.
Lai
,
K.
,
Wang
,
W.
, and
Giles
,
H.
,
2017
, “
Solar Shading Performance of Window With Constant and Dynamic Shading Function in Different Climate Zones
,”
Sol. Energy
,
147
, pp.
113
125
.
15.
Cho
,
J.
,
Yoo
,
C.
, and
Kim
,
Y.
,
2014
, “
Viability of Exterior Shading Devices for High-Rise Residential Buildings: Case Study for Cooling Energy Saving and Economic Feasibility Analysis
,”
Energy Build.
,
82
, pp.
771
785
.
16.
Babaizadeh
,
H.
,
Haghighi
,
N.
,
Asadi
,
S.
,
Broun
,
R.
, and
Riley
,
D.
,
2015
, “
Life Cycle Assessment of Exterior Window Shadings in Residential Buildings in Different Climate Zones
,”
Build. Environ.
,
90
, pp.
168
177
.
17.
Hoffmann
,
S.
,
Lee
,
S. E.
,
McNeil
,
A.
,
Fernandes
,
L.
,
Dragan Vidanovic
,
D.
, and
Thanachareonkit
,
A.
,
2016
, “
Balancing Daylight, Glare, and Energy-Efficiency Goals: An Evaluation of Exterior Coplanar Shading Systems Using Complex Fenestration Modeling Tools
,”
Energy Build.
,
111
, pp.
279
298
.
18.
Sherif
,
A.
,
El-Zafarany
,
A.
, and
Arafa
,
R.
,
2012
, “
External Perforated Window Solar Screens: The Effect of Screen Depth and Perforation Ratio on Energy Performance in Extreme Desert Environments
,”
Energy Build.
,
52
, pp.
1
10
.
19.
Palmero-Marrero
,
A.
, and
Oliveira
,
A.
,
2010
, “
Effect of Louver Shading Devices on Building Energy Requirements
,”
Appl. Energy
,
87
(
6
), pp.
2040
2049
.
20.
Kim
,
G.
,
Hong
,
S. L.
,
Tae
,
S. L.
,
Schaefer Laura
,
S.
, and
Taidim Jeong
,
T.
,
2012
, “
Comparative Advantage of an Exterior Shading Device in Thermal Performance for Residential Buildings
,”
Energy Build.
,
46
, pp.
105
111
.
21.
Atzeri
,
A.
,
Cappelletti
,
F.
, and
Gasparella
,
A.
,
2014
, “
Internal Versus External Shading Devices Performance in Office Buildings
,”
Energy Procedia
,
45
, pp.
463
472
.
22.
Oleskowicz-Popiel
,
C.
, and
Sobczak
,
M.
,
2014
, “
Effect of the Roller Blinds on Heat Losses Through a Double-Glazing Window During Heating Season in Central Europe
,”
Energy Build.
,
73
, pp.
48
58
.
23.
Kim
,
J. T.
, and
Kim
,
G.
,
2010
, “
Advanced External Shading Device to Maximize Visual and View Performance
,”
Indoor Built Environ.
,
19
(
1
), pp.
65
72
.
24.
Lee
,
E.
,
Selkowitz
,
S. E.
,
Hughes
,
G.
, and
Thurm
,
D. M.
,
2009
,
Transformation Opportunities for Emerging Dynamic Facade and Dimmable Lighting Control Systems
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
, http://repositories.cdlib.org/lbnl/LBNL-55310
25.
Tan
,
Y.
,
Peng
,
J.
,
Curcija
,
C.
,
Yin
,
R.
,
Deng
,
L.
, and
Chen
,
Y.
,
2020
, “
Study on the Impact of Window Shades’ Physical Characteristics and Opening Modes on Air Conditioning Energy Consumption in China
,”
Indoor Built Environ.
,
1
(
3
), pp.
254
261
.
26.
Hammad
,
F.
, and
Abu-Hijleh
,
B.
,
2010
, “
The Energy Savings Potential of Using Dynamic External Louvers in an Office Building
,”
Energy Build.
,
42
(
10
), pp.
1888
1895
.
27.
Nielsen
,
M. V.
,
Svendsen
,
S.
, and
Jensen
,
L. B.
,
2011
, “
Quantifying the Potential of Automated Dynamic Solar Shading in Office Buildings Through Integrated Simulations of Energy and Daylight
,”
Sol. Energy
,
85
(
5
), pp.
757
768
.
28.
Skarning
,
G. C. J.
,
Hviig
,
C. A.
, and
Svendsen
,
S.
,
2017
, “
The Effect of Dynamic Solar Shading on Energy, Daylighting and Thermal Comfort in a Nearly Zero-Energy Loft Room in Rome and Copenhagen
,”
Energy Build.
,
135
, pp.
302
11
.
29.
Krarti
,
M.
,
2020
, “
Evaluation of Energy Performance of Dynamic Overhang Systems for US Residential Buildings
,”
Energy Build.
,
234
, p.
110699
.
30.
Krarti
,
M.
,
2021
, “
Impact of PV Integrated Rotating Overhangs for US Residential Buildings
,”
Renewable Energy
,
174
, pp.
835
849
.
31.
Krarti
,
M.
,
2021
, “
Evaluation of PV Integrated Sliding-Rotating Overhangs for US Apartment Buildings
,”
Appl. Energy
,
293
, p.
116942
.
32.
Krarti
,
M.
,
2021
, “
Performance of PV Integrated Dynamic Overhangs Applied to US Homes
,”
Energy
,
230
, p.
120843
.
33.
Ebrahimpour
,
A.
, and
Maerefat
,
M.
,
2011
, “
Application of Advanced Glazing and Overhangs in Residential Buildings
,”
Energy Convers. Manage.
,
5
(
1
), pp.
212
219
.
34.
DOE-2
,
2017
, “DOE-2 Engineers Manual,” Lawrence Berkeley National Laboratory and Los Alamos National Laboratory, US Department of Energy, Washington, DC. http://doe2.com/download/DOE-21E/DOE-2EngineersManual Version2.1A.pdf
35.
Meldem
,
R.
, and
Winkelmann
,
F.
,
1998
, “
Comparison of DOE-2 With Temperature Measurements in the Pala Test Houses
,”
Energy Build.
,
27
(
1
), pp.
69
81
.
36.
Loutzenhiser
,
P. G.
,
Maxwell
,
G. M.
, and
Manz
,
H.
,
2007
, “
An Empirical Validation of the Daylighting Algorithms and Associated Interactions in Building Energy Simulation Programs Using Various Shading Devices and Windows
,”
Energy
,
32
(
10
), pp.
1855
1870
.
37.
Hassan
,
M. A.
,
Shebl
,
S. S.
, and
Ibrahim
,
E. A.
,
2011
, “
Modeling and Validation of the Thermal Performance of an Affordable, Energy Efficient, Healthy Dwelling Unit
,”
Build. Simul.
,
4
(
3
), pp.
255
262
.
38.
Loonen
,
R. C. G. M.
,
Favoino
,
F.
,
Hensen
,
J. L. M.
, and
Overend
,
M.
,
2017
, “
Review of Current Status, Requirements and Opportunities for Building Performance Simulation of Adaptive Facades
,”
J. Build. Perform. Simul.
,
10
(
2
), pp.
205
223
.
39.
Kim
,
H.
, and
Clayton
,
M. J.
,
2020
, “
Parametric Behavior Maps: A Method for Evaluating the Energy Performance of Climate-Adaptive Building Envelopes
,”
Energy Build.
,
219
, p.
110020
.
40.
EnergyPlus
,
2019
, “EnergyPlus Documentation,” Engineering Reference, The Reference to EnergyPlus Calculations, https://energyplus.net/sites/default/files/pdfs_v8.3.0/EngineeringReference.pdf
41.
Barber
,
K. A.
, and
Krarti
,
M.
,
2022
, “
A Review of Optimization Based Tools for Design and Control of Building Energy Systems
,”
Renewable Sustainable Energy Rev.
,
160
, p.
112359
.
42.
Deru
,
M.
,
Field
,
K.
,
Studer
,
D.
,
Benne
,
K.
,
Griffith
,
B.
,
Torcellini
,
P.
,
Liu
,
B.
, et al
,
2011
, “U.S. Department of Energy Commercial Reference Building Models of the National Building Stock,” National Renewable Energy Laboratory, Technical Report NREL/TP-5500-46861, Golden, CO.
43.
ASHRAE, ANSI/ASHRAE/IES
,
2019
, Standard 90.1-2019 Energy Standard for Buildings Except Low-Rise Residential Buildings, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta, GA.
44.
Cho
,
S.
,
Ray
,
S.
,
Im
,
P.
,
Honari
,
H.
, and
Ahn
,
J.
,
2017
, “
Methodology for Energy Strategy to Prescreen the Feasibility of Ground Source Heat Pump Systems in Residential and Commercial Buildings in the United States
,”
Energy Strateg. Rev.
,
18
, pp.
53
62
.
45.
NREL
,
2012
, National Solar Radiation Database 1991–2010 Update, https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/
You do not currently have access to this content.