Abstract

Advanced building climate control systems have the potential to significantly reduce greenhouse gas emissions and energy costs, but more research is needed to bring these systems to market. A key component of building control research is testing algorithms through simulation. Many high-fidelity simulation testbeds exist, but they tend to be complex and opaque to users. Simpler, more transparent testbeds also exist, but they tend to neglect important nonlinearities and disturbances encountered in practice. In this paper, we develop a simulation testbed that is computationally efficient, transparent and high fidelity. We validate the testbed empirically, then demonstrate its use through the examples of system identification, online state and parameter estimation, and model predictive control (MPC). The testbed is intended to enable rapid, reliable analysis of building control algorithms, thereby accelerating progress toward reducing greenhouse gas emissions at scale. We call the resulting testbed and supporting functions the bldg toolbox, which is free, open source, and available online.

References

1.
Siroky
,
J.
,
Oldewurtel
,
F.
,
Cigler
,
J.
, and
Privara
,
S.
,
2011
, “
Experimental Analysis of Model Predictive Control for an Energy Efficient Building Heating System
,”
Appl. Energy.
,
88
(
9
), pp.
3079
3087
. 10.1016/j.apenergy.2011.03.009
2.
Schuss
,
M.
,
Zach
,
R.
,
Orehounig
,
K.
, and
Mahdavi
,
A.
,
2011
, “
Empirical Evaluation of a Predictive Simulation-Based Control Method
,”
Proceedings of the 12th International IBPSA Conference
,
Sydney, Australia
, pp.
918
925
.
3.
Bengea
,
S.
,
Kelman
,
A.
,
Borrelli
,
F.
,
Taylor
,
R.
, and
Narayanan
,
S.
,
2012
, “
Model Predictive Control for Mid-Size Commercial Building HVAC: Implementation, Results and Energy Savings
,”
International Conference on Building Energy and Environment
,
Boulder, CO
.
4.
Sturzenegger
,
D.
,
Gyalistras
,
D.
,
Morari
,
M.
, and
Smith
,
R.
,
2016
, “
Model Predictive Climate Control of a Swiss Office Building: Implementation, Results, and Cost-Benefit Analysis
,”
IEEE Transactions on Control Systems Technology
,
24
(
1
), pp.
1
12
.
5.
Ferreira
,
P. M.
,
Ruano
,
A. E.
,
Silva
,
S.
, and
Conceicao
,
E. Z. E.
,
2012
, “
Neural Networks Based Predictive Control for Thermal Comfort and Energy Savings in Public Buildings
,”
Energy Build.
,
55
, pp.
238
251
. 10.1016/j.enbuild.2012.08.002
6.
Huang
,
H.
,
Chen
,
L.
, and
Hu
,
E.
,
2015
, “
A New Model Predictive Control Scheme for Energy and Cost Savings in Commercial Buildings: An Airport Terminal Building Case Study
,”
Building Environ.
,
89
, pp.
203
216
. 10.1016/j.buildenv.2015.01.037
7.
Privara
,
S.
,
Cigler
,
J.
,
Vana
,
Z.
,
Oldewurtel
,
F.
, and
Sagerschnig
,
C.
,
2013
, “
Building Modeling as a Crucial Part for Building Predictive Control
,”
Energy Build.
,
56
, pp.
8
22
. 10.1016/j.enbuild.2012.10.024
8.
Lin
,
Y.
,
Middelkoop
,
T.
, and
Barooah
,
P.
,
2012
, “
Issues in Identification of Control-Oriented Thermal Models of Zones in Multi-Zone Buildings
,”
IEEE Conference on Decision and Control
,
Maui, HI
.
9.
Radecki
,
P.
, and
Hencey
,
B.
,
2012
, “
Online Building Thermal Parameter Estimation Via Unscented Kalman Filtering
,”
American Control Conference
,
Montreal, QC, Canada
, pp.
3056
3062
.
10.
Radecki
,
P.
, and
Hencey
,
B.
,
2013
, “
Online Thermal Estimation, Control, and Self-Excitation of Buildings
,”
IEEE Conference on Decision and Control
,
Florence, Italy
, pp.
4802
4807
.
11.
Fux
,
S.
,
Ashouri
,
A.
,
Benz
,
M.
, and
Guzzella
,
L.
,
2014
, “
EKF Based Self-Adaptive Thermal Model for a Passive House
,”
Energy Build.
,
68
, pp.
811
817
. 10.1016/j.enbuild.2012.06.016
12.
Maasoumy
,
M.
,
Moridian
,
B.
,
Razmara
,
M.
,
Shahbakhti
,
M.
, and
Sangiovanni-Vincentelli
,
A.
,
2013
, “
Online Simultaneous State Estimation and Paramater Adaptation for Building Predictive Control
,”
ASME 2013 Dynamic Systems and Control Conference
,
Palo Alto, CA
.
13.
Martincevic
,
A.
,
Starcic
,
A.
, and
Vasak
,
M.
,
2014
, “
Parameter Estimation for Low-Order Models of Complex Buildings
,”
IEEE Innovative Smart Grid Technologies Conference Europe
,
Istanbul, Turkey
, pp.
1
6
.
14.
Liao
,
Z.
, and
Dexter
,
A. L.
,
2010
, “
An Inferential Model-Based Predictive Control Scheme for Optimizing the Operation of Boilers in Building Space-Heating Systems
,”
IEEE Trans. Control Syst. Technol.
,
18
(
5
), pp.
1092
1102
. 10.1109/TCST.2009.2033667
15.
Aswani
,
A.
,
Master
,
N.
,
Taneja
,
J.
,
Culler
,
D.
, and
Tomlin
,
C.
,
2011
, “
Reducing Transient and Steady State Electricity Consumption in HVAC Using Learning-Based Model-Predictive Control
,”
Proc. IEEE
,
100
(
1
), pp.
240
253
.
16.
Ma
,
Y.
,
Borrelli
,
F.
,
Hencey
,
B.
,
Coffey
,
B.
,
Bengea
,
S.
, and
Haves
,
P.
,
2012
, “
Model Predictive Control for the Operation of Building Cooling Systems
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
796
803
. 10.1109/TCST.2011.2124461
17.
Castilla
,
M.
,
Alvarez
,
J. D.
,
Normey-Rico
,
J. E.
, and
Rodríguez
,
F.
,
2014
, “
Thermal Comfort Control Using a Non-Linear MPC Strategy: A Real Case of Study in a Bioclimatic Building
,”
J. Process. Control.
,
24
(
6
), pp.
703
713
. 10.1016/j.jprocont.2013.08.009
18.
Kircher
,
K. J.
, and
Zhang
,
K. M.
,
2015
, “
Model Predictive Control of Thermal Storage for Demand Response
,”
American Control Conference (ACC)
, pp.
956
961
.
19.
Maasoumy
,
M.
,
Razmara
,
M.
,
Shahbakhti
,
M.
, and
Sangiovanni-Vincentelli
,
A.
,
2014
, “
Handling Model Uncertainty in Model Predictive Control for Energy Efficient Buildings
,”
Energy Build.
,
77
, pp.
377
392
. 10.1016/j.enbuild.2014.03.057
20.
Tanaskovic
,
M.
,
Sturzenegger
,
D.
,
Smith
,
R.
, and
Morari
,
M.
,
2017
, “
Robust Adaptive Model Predictive Building Climate Control
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
1871
1876
.
21.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Build.
,
45
, pp.
15
27
. 10.1016/j.enbuild.2011.09.022
22.
Oldewurtel
,
F.
,
Jones
,
C.
,
Parisio
,
A.
, and
Morari
,
M.
,
2014
, “
Stochastic Model Predictive Control for Building Climate Control
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1198
1205
. 10.1109/TCST.2013.2272178
23.
Ma
,
Y.
,
Matusko
,
J.
, and
Borrelli
,
F.
,
2015
, “
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
101
116
. 10.1109/TCST.2014.2313736
24.
Kircher
,
K. J.
, and
Zhang
,
K. M.
,
2016
, “
Sample-Average Model Predictive Control of Uncertain Linear Systems
,”
Conference on Decision and Control
, pp.
6234
6239
.
25.
Crawley
,
D.
,
Lawrie
,
L.
,
Winkelman
,
F. C.
,
Buhl
,
W.
,
Huang
,
Y. J.
,
Pederson
,
C. O.
,
Strand
,
R. K.
,
Liesen
,
R. J.
,
Fisher
,
D. E.
,
Witte
,
M. J.
, and
Glazer
,
J.
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
. 10.1016/S0378-7788(00)00114-6
26.
Klein
,
S.
,
Beckman
,
W.
,
Mitchell
,
J.
,
Duffie
,
J.
,
Duffie
,
N.
,
Freeman
,
T.
,
Mitchell
,
J.
, and
Kummert
,
M.
,
2004
,
TRNSYS 16—A TRaNsient System Simulation Program, User Manual, Solar Energy Laboratory
,
University of Wisconsin-Madison
,
Madison, WI
.
27.
Sturzenegger
,
D.
,
Gyalistras
,
D.
,
Semeraro
,
V.
,
Morari
,
M.
, and
Smith
,
R.
,
2014
, “
BRCM Matlab Toolbox: Model Generation for Model Predictive Building Control
,”
American Control Conference
,
Portland, OR
, pp.
1063
1069
.
28.
Gorecki
,
T.
,
Qureshi
,
F.
, and
Jones
,
C.
,
2015
, “
OpenBuild: An Integrated Simulation Environment for Building Control
,”
IEEE Conference on Control Applications (CCA)
,
Sydney, NSW, Australia
, pp.
1522
1527
.
29.
Wetter
,
M.
,
2011
, “
Co-Simulation of Building Energy and Control Systems With the Building Controls Virtual Test Bed
,”
J. Build. Perform. Simul.
,
4
(
3
), pp.
185
203
. 10.1080/19401493.2010.518631
30.
Bernal
,
W.
,
Behl
,
M.
,
Nghiem
,
T.
, and
Mangharam
,
R.
,
2012
, “
MLE+: A Tool for Integrated Design and Deployment of Energy Efficient Building Controls
,”
Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings
,
Toronto, Canada
, pp.
123
130
.
31.
Darivianakis
,
G.
,
Georghiou
,
A.
,
Smith
,
R. S.
, and
Lygeros
,
J.
,
2017
, “
The Power of Diversity: Data-Driven Robust Predictive Control for Energy-Efficient Buildings and Districts
,”
IEEE Transactions on Control Systems Technology
,
27
(
1
), pp.
132
145
.
32.
Gupta
,
S. K.
,
Kar
,
K.
,
Mishra
,
S.
, and
Wen
,
J. T.
,
2018
, “
Singular Perturbation Method for Smart Building Temperature Control Using Occupant Feedback
,”
Asian J. Contr.
,
20
(
1
), pp.
386
402
.
33.
Finck
,
C.
,
Li
,
R.
,
Kramer
,
R.
, and
Zeiler
,
W.
,
2018
, “
Quantifying Demand Flexibility of Power-to-Heat and Thermal Energy Storage in the Control of Building Heating Systems
,”
Appl. Energy.
,
209
, pp.
409
425
.
34.
Qureshi
,
F.
,
Gorecki
,
T.
, and
Jones
,
C.
,
2014
, “
Model Predictive Control for Market-Based Demand Response Participation
,”
IFAC Proceedings Volumes
,
47
(
3
), pp.
11153
11158
.
35.
Lymperopoulos
,
I.
,
Qureshi
,
F. A.
,
Nghiem
,
T.
,
Khatir
,
A. A.
, and
Jones
,
C. N.
,
2015
, “
Providing Ancillary Service With Commercial Buildings: The Swiss Perspective
,”
IFAC-PapersOnLine
,
48
(
8
), pp.
6
13
.
36.
Picard
,
D.
,
Drgona
,
J.
,
Kvasnica
,
M.
, and
Helsen
,
L.
,
2017
, “
Impact of the Controller Model Complexity on Model Predictive Control Performance for Buildings
,”
Energy Build.
,
152
, pp.
739
751
. 10.1016/j.enbuild.2017.07.027
37.
Judkoff
,
R.
, and
Neymark
,
J.
,
1995
, “
International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method Building Energy Simulation Test (Bestest) and Diagnostic Method
,”
National Renewable Energy Laboratory
. doi:10.2172/90674
38.
ASHRAE
,
2004
,
Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard
.
39.
USDOE
,
2019
,
Engineering Reference – EnergyPlus
,
U.S. Department of Energy
.
40.
USDOE
,
2018
,
Input Output Reference – EnergyPlus
,
U.S. Department of Energy
.
41.
Kircher
,
K. J.
, and
Zhang
,
K. M.
,
2015
, “
On the Lumped Capacitance Approximation Accuracy in RC Network Building Models
,”
Energy Build.
,
104
, pp.
454
462
. 10.1016/j.enbuild.2015.09.053
42.
Lienhard IV
,
J. H.
, and
Lienhard V
,
J. H.
,
2011
,
A Heat Transfer Textbook
, 4th ed.,
Dover Publications
,
Mineola, NY
.
43.
Underwood
,
C. P.
, and
Yik
,
F. W. H.
,
2004
,
Modeling Methods for Energy in Buildings
,
Blackwell Publishing
,
Malden, MA
.
44.
Khalifa
,
A.
,
2001
, “
Natural Convective Heat Transfer Coefficient—A Review: II. Surfaces in Two-and Three-Dimensional Enclosures
,”
Energy Convers. Manage.
,
42
(
4
), pp.
505
517
. 10.1016/S0196-8904(00)00043-1
45.
Oppenheim
,
A. K.
,
1956
, “
Radiation Analysis by the Network Method
,”
Trans. ASME
,
78
, pp.
725
735
.
46.
Holmes
,
M. H.
,
2007
,
Introduction to Numerical Methods in Differential Equations
,
Springer
,
New York
.
47.
Hamdi
,
S.
,
Schiesser
,
W. E.
, and
Griffiths
,
G. W.
,
2007
, “
Method of Lines
,”
Scholarpedia
,
2
(
7
), p.
2859
. 10.4249/scholarpedia.2859
48.
Sharaf
,
A. A.
, and
Bakodah
,
H. O.
,
2005
, “
A Good Spatial Discretisation in the Method of Lines
,”
Appl. Math. Comput.
,
171
, pp.
1253
1263
. 10.1016/j.amc.2005.01.144
49.
Crowley
,
M.
, and
Hashmi
,
M. S. J.
,
1998
, “
Evaluation of Implicit Numerical Methods for Building Energy Simulation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
212
(
5
), pp.
331
342
. 10.1177/095765099821200502
50.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
, “User’s Manual for TMY3 Data Sets,”
National Renewable Energy Laboratory
, Tech. Rep. NREL/TP-581-43156.
51.
Duffie
,
J.
, and
Beckman
,
W.
,
2006
,
Solar Engineering of Thermal Processes
, 3rd ed.,
Wiley
,
New York
.
52.
Kircher
,
K. J.
,
2016
, “
BLDG, a MATLAB® Building Simulator
,” Accessed November 7, 2020. https://github.com/kevinjkircher/bldg
53.
Laret
,
L.
,
1980
, “
Use of General Models With a Small Number of Parameters
,”
7th International Congress CLIMA 2000, Budapest, Hungary
, pp.
263
275
.
54.
Crabb
,
J.
,
Murdoch
,
N.
, and
Penman
,
J. M.
,
1987
, “
A Simplified Thermal Response Model
,”
Build. Serv. Eng. Res. Technol.
,
8
(
1
), pp.
13
19
. 10.1177/014362448700800104
55.
Wan
,
E.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
The IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium
,
Lake Louise, Alberta, Canada
, pp.
153
158
.
You do not currently have access to this content.