Abstract

Thermostatically controlled loads (TCLs) have shown great potential for demand response (DR) in electric grid operations. However, it has been commonly seen that DR events using TCLs may cause load synchronization and unwanted oscillatory effects, especially in homogeneous populations. In an attempt to mitigate the negative impacts of DR events, a decentralized method is proposed that modifies each thermostat behavior based on the activity of a small number of nearby TCLs. This feedback introduces the possibility of instability in the aggregate behavior. A stability analysis is performed on a linearized model of the aggregate system and the results of that analysis compared to simulation results. The proposed modification of thermostat behavior results in fourfold reduction in the post-DR peak while suppressing ensuing oscillations at the expense of a modest increase in compressor cycling. The linearized model also provides insight into the aggregate behavior of the population.

References

1.
Denholm
,
P.
,
O’Connel
,
M.
,
Brinkman
,
G.
, and
Jorgenson
,
J.
,
2015
, “
Overgeneration From Solar Energy in California: A Field Guide to the Duck Chart
.” National Renewable Energy Laboratory, Technical Report, NREL/TP-6A20-65023.
2.
Callaway
,
D. S.
,
2009
, “
Tapping the Energy Storage Potential in Electric Loads to Deliver Load Following and Regulation, With Application to Wind Energy
,”
Energy. Convers. Manage.
,
50
(
5
), pp.
1389
1400
. 10.1016/j.enconman.2008.12.012
3.
Kilkki
,
O.
,
Kangasrääsä
,
A.
,
Nikkilä
,
R.
,
Alahävälä
,
A.
, and
Seilonen
,
I.
,
2014
, “
Agent-Based Modeling and Simulation of a Smart Grid: A Case Study of Communication Effects on Frequency Control
,”
Engin. Appl. Artific. Intel.
,
33
(
Aug.
), pp.
91
98
. 10.1016/j.engappai.2014.04.007
4.
Ringler
,
P.
,
Keles
,
D.
, and
Fichtner
,
W.
,
2016
, “
Agent-Based Modelling and Simulation of Smart Electricity Grids and Markets – A Literature Review
,”
Renew. Sust. Energ. Rev.
,
57
(
May
), pp.
205
215
. 10.1016/j.rser.2015.12.169
5.
Xydas
,
E.
,
Marmaras
,
C.
, and
Cipcigan
,
L. M.
,
2016
, “
A Multi-Agent Based Scheduling Algorithm for Adaptive Electric Vehicles Charging
,”
Appl. Energy.
,
177
(
Sept.
), pp.
354
365
. 10.1016/j.apenergy.2016.05.034
6.
Sinitsyn
,
N. A.
,
Kundu
,
S.
, and
Backhaus
,
S.
,
2013
, “
Safe Protocols for Generating Power Pulses With Heterogeneous Populations of Thermostatically Controlled Loads
,”
Energy. Convers. Manage.
,
67
, pp.
297
308
. 10.1016/j.enconman.2012.11.021
7.
Zhang
,
W.
,
Lian
,
J.
,
Chang
,
C. Y.
, and
Kalsi
,
K.
,
2013
, “
Aggregated Modeling and Control of Air Conditioning Loads for Demand Response
,”
IEEE Trans. Power Syst.
,
28
(
4
), pp.
4655
4664
. 10.1109/TPWRS.2013.2266121
8.
Chen
,
Y.
,
Bušić
,
A.
, and
Meyn
,
S.
,
2014
, “
Individual Risk in Mean Field Control With Application to Automated Demand Response
,”
IEEE Conference on Decision and Control
,
Los Angeles, CA
,
Dec. 15–17
, pp.
6425
6432
.
9.
Meyn
,
S. P.
,
Barooah
,
P.
,
Busic
,
A.
,
Chen
,
Y.
, and
Ehren
,
J.
,
2015
, “
Ancillary Service to the Grid Using Intelligent Deferrable Loads
,”
IEEE Trans. Automat. Contr.
,
60
(
11
), pp.
2847
2862
. 10.1109/TAC.2015.2414772
10.
Chen
,
Y.
,
Busic
,
A.
, and
Meyn
,
S. P.
,
2017
, “
State Estimation for the Individual and the Population in Mean Field Control with Application to Demand Dispatch
,”
IEEE Trans. Automat. Contr.
,
62
(
3
), pp.
1138
1149
. 10.1109/TAC.2016.2572880
11.
Hao
,
H.
,
Sanandaji
,
B. M.
,
Poolla
,
K.
, and
Vincent
,
T. L.
,
2015
, “
Aggregate Flexibility of Thermostatically Controlled Loads
,”
IEEE Trans. Power Syst.
,
30
(
1
), pp.
189
198
. 10.1109/TPWRS.2014.2328865
12.
Malhame
,
R.
, and
Chong
,
C.-Y.
,
1985
, “
Electric Load Model Synthesis by Diffusion Approximation of a High-Order Hybrid-State Stochastic System
,”
IEEE Trans. Autom. Control
,
30
(
9
), pp.
854
860
. 10.1109/TAC.1985.1104071
13.
Bashash
,
S.
, and
Fathy
,
H. K.
,
2011
, “
Modeling and Control Insights Into Demand-Side Energy Management Through Setpoint Control of Thermostatic Loads
,”
American Control Conference
,
San Francisco, CA
,
June 29–July 1
, pp.
4546
4553
.
14.
Bashash
,
S.
, and
Fathy
,
H. K.
,
2013
, “
Modeling and Control of Aggregate Air Conditioning Loads for Robust Renewable Power Management
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1318
1327
. 10.1109/TCST.2012.2204261
15.
Perfumo
,
C.
,
Kofman
,
E.
,
Braslavsky
,
J. H.
, and
Ward
,
J. K.
,
2012
, “
Load Management: Model-Based Control of Aggregate Power for Populations of Thermostatically Controlled Loads
,”
Energy. Convers. Manage.
,
55
(
Mar.
), pp.
36
48
. 10.1016/j.enconman.2011.10.019
16.
Wood
,
L. B.
, and
Harry Asada
,
H.
,
2011
, “
Cellular Stochastic Control of the Collective Output of a Class of Distributed Hysteretic Systems
,”
J. Dyn. Syst. Meas. Control.
,
133
(
6
), p.
061011
. 10.1115/1.4004582
17.
Ramchurn
,
S. D.
,
Vytelingum
,
P.
,
Rogers
,
A.
, and
Jennings
,
N.
, “
Agent-Based Control for Decentralised Demand Side Management in the Smart Grid
”. p.
8
.
18.
Al-Fuqaha
,
A.
,
Guizani
,
M.
,
Mohammadi
,
M.
,
Aledhari
,
M.
, and
Ayyash
,
M.
,
2015
, “
Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications
,”
IEEE Commun. Surveys Tutorials
,
17
(
4
), pp.
2347
2376
. 10.1109/COMST.2015.2444095
19.
Malhame
,
R.
, and
Chong
,
C.-Y.
,
1985
, “
Electric Load Model Synthesis by Diffusion Approximation of a High-Order Hybrid-State Stochastic System
,”
IEEE Trans. Automatic Control
,
30
(
9
), pp.
854
860
. 10.1109/TAC.1985.1104071
20.
Kuwada
,
J.
,
Mehrpouyan
,
H.
, and
Gardner
,
J. F.
,
2019
, “
Design Resilience of Demand Response Systems Utilizing Locally Communicating Thermostatically Controlled Loads
,”
ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–19
, p. V006T06A045.
21.
Kamenetskiy
,
V.
,
2017
, “
Frequency-Domain Stability Conditions for Hybrid Systems
,”
Automat. Rem. Control
,
78
(
12
), pp.
2101
2119
. 10.1134/S0005117917120013
22.
Cheraghi-Shami
,
F.
,
Gharaveisi
,
A.-A.
,
Farsangi
,
M. M.
, and
Mohammadian
,
M.
,
2019
, “
Discontinuous Lyapunov Functions for a Class of Piecewise Affine Systems
,”
Trans. Inst. Measurement Control
,
41
(
3
), pp.
729
736
. 10.1177/0142331218771138
23.
Hernandez
,
Andrew
, and
Fumo
,
Nelson
,
2020
, “
A Review of Variable Refrigerant Flow HVAC System Components for Residential Applications
,”
Int. J. Refr.
,
110
, pp.
47
57
. https://doi.org/10.1016/j.ijrefrig.2019.11.005
You do not currently have access to this content.