Abstract

The optimal design of the heliostat field is one of the fundamental issues in concentrated solar power generation. Due to the complexity of computing the shading and blocking, the accurate computation of optical efficiency of the heliostat field requires high computational resources. In this work, an optical efficiency model based on 2D Boolean operations was proposed, in which the heliostat, shading, and blocking objects were converted into planar polygons defined by boundaries and the planar polygons were reconstructed for Boolean operations (e.g., intersection, union, and difference). By comparing with the ray tracing method based on heliostat discretization and boundary mesh, it is shown that for the same accuracy requirement, the proposed method can greatly reduce the computation time. The method may serve as a powerful tool for the optimization design of complex heliostat fields.

References

1.
Collado
,
F. J.
, and
Guallar
,
J.
,
2012
, “
Campo: Generation of Regular Heliostat Fields
,”
Renewable Energy
,
46
(
10
), pp.
49
59
.
2.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2013
, “
A Review of Studies on Central Receiver Solar Thermal Power Plants
,”
Renewable Sustainable Energy Rev.
,
23
(
7
), pp.
12
39
.
3.
Kiwan
,
S.
, and
Khammash
,
A. L.
,
2020
, “
Optical Performance of a Novel Two-Receiver Solar Central Tower System
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011005
.
4.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
(
Special Issue
), pp.
3
37
.
5.
Yerudkar
,
A. N.
,
Kumar
,
D.
,
Dalvi
,
V. H.
,
Panse
,
S.
,
Gaval
,
V. R.
, and
Joshi
,
J. B.
,
2024
, “
Economically Feasible Solutions in Concentrating Solar Power Technology Specifically for Heliostats—A Review
,”
Renewable Sustainable Energy Rev.
,
189
(
Part A
), p.
113825
.
6.
Besarati
,
S. M.
, and
Goswami
,
D. Y.
,
2014
, “
A Computationally Efficient Method for the Design of the Heliostat Field for Solar Power Tower Plant
,”
Renewable Energy
,
69
(
9
), pp.
226
232
.
7.
Ghazarian
,
A.
,
Galione
,
P.
, and
Curto
,
P.
,
2025
, “
Concentrated Solar Power Techno-Economic Analysis in Humid Subtropical South America: The Uruguayan Case
,”
ASME J. Sol. Energy Eng.
,
147
(
1
), p.
011001
.
8.
Pisani
,
L.
,
Moreau
,
G. S.
,
Leonardi
,
E.
,
Podda
,
C.
,
Mameli
,
A.
, and
Cao
,
G. C. M.
,
2023
, “
Multi-Tower Heliostat Field Optimization by Means of Adiabatic Quantum Computer
,”
Sol. Energy
,
263
(
10
), p.
111893
.
9.
Mahmoudimehr
,
J.
, and
Sebghati
,
P.
,
2019
, “
A Novel Multi-Objective Dynamic Programming Optimization Method: Performance Management of a Solar Thermal Power Plant as a Case Study
,”
Energy
,
168
(
2A
), pp.
796
814
.
10.
Besarati
,
S. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Optimal Heliostat Aiming Strategy for Uniform Distribution of Heat Flux on the Receiver of a Solar Power Tower Plant
,”
Energy Convers. Manage.
,
84
(
8
), pp.
234
243
.
11.
Gadalla
,
M.
, and
Saghafifar
,
M.
,
2018
, “
A Concise Overview of Heliostat Fields-Solar Thermal Collectors: Current State of Art and Future Perspective
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3145
3163
.
12.
Kiwan
,
S.
, and
Al Hamad
,
S.
,
2019
, “
On Analyzing the Optical Performance of Solar Central Tower Systems on Hillsides Using Biomimetic Spiral Distribution
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011010
.
13.
Eddhibi
,
F.
,
Ben Haj Ali
,
A.
,
Ben Amara
,
M.
,
Balghouthi
,
M.
, and
Guizani
,
A. A.
,
2022
, “
A Novel Mathematical Approach for the Optical Efficiency Optimization of Solar Tower Power Plant Technology
,”
Int. J. Energy Res.
,
46
(
3
), pp.
2477
2499
.
14.
Belaid
,
A.
,
Filali
,
A.
,
Gama
,
A.
,
Bezza
,
B.
,
Arrif
,
T.
, and
Bouakba
,
M.
,
2020
, “
Design Optimization of a Solar Tower Power Plant Heliostat Field by Considering Different Heliostat Shapes
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11524
11541
.
15.
Hénault
,
F.
,
Flamant
,
G.
, and
Caliot
,
C.
,
2025
, “
Optimizing the Concentration Ratio of Multi-Faceted Focusing Heliostats
,”
ASME J. Sol. Energy Eng.
,
147
(
4
), p.
044501
.
16.
Rizvi
,
A. A.
,
Danish
,
S. N.
,
El-Leathy
,
A.
,
Al-Ansary
,
H.
, and
Yang
,
D.
,
2021
, “
A Review and Classification of Layouts and Optimization Techniques Used in Design of Heliostat Fields in Solar Central Receiver Systems
,”
Sol. Energy
,
218
(
4
), pp.
296
311
.
17.
Garcia
,
P.
,
Ferriere
,
A.
, and
Bezian
,
J. J.
,
2008
, “
Codes for Solar Flux Calculation Dedicated to Central Receiver System Applications: A Comparative Review
,”
Sol. Energy
,
82
(
3
), pp.
189
197
.
18.
Yao
,
Z. H.
,
Wang
,
Z. F.
,
Lu
,
Z. W.
, and
Wei
,
X. D.
,
2009
, “
Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China
,”
Renewable Energy
,
34
(
11
), pp.
2437
2446
.
19.
Leonardi
,
E.
, and
D'Aguanno
,
B.
,
2011
, “
CRS4-2: A Numerical Code for the Calculation of the Solar Power Collected in A Central Receiver System
,”
Energy
,
36
(
8
), pp.
4828
4837
.
20.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
,
2012
, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Sol. Energy
,
86
(
2
), pp.
792
803
.
21.
Wei
,
X. D.
,
Lu
,
Z. W.
,
Wang
,
Z. F.
,
Yu
,
W. X.
,
Zhang
,
H. X.
, and
Yao
,
Z. H.
,
2010
, “
A New Method for the Design of the Heliostat Field Layout for Solar Tower Power Plant
,”
Renewable Energy
,
35
(
9
), pp.
1970
1975
.
22.
Huang
,
W. D.
, and
Xu
,
Q.
,
2014
, “
Development of an Analytical Method and Its Quick Algorithm to Calculate the Solar Energy Collected by a Heliostat Field in a Year
,”
Energy Convers. Manage.
,
83
(
7
), pp.
110
118
.
23.
Wang
,
K. J.
,
Qi
,
X. X.
, and
Liu
,
H. D.
,
2019
, “
Photovoltaic Power Forecasting Based LSTM-Convolutional Network
,”
Energy
,
189
(
12B
), p.
116225
.
24.
Wang
,
J. X.
,
Guo
,
L. L.
,
Zhang
,
C. Y.
,
Song
,
L.
,
Duan
,
J. Y.
, and
Duan
,
L. Q.
,
2020
, “
Thermal Power Forecasting of Solar Power Tower System by Combining Mechanism Modeling and Deep Learning Method
,”
Energy
,
208
(
10A
), p.
118403
.
25.
Cruz
,
N. C.
,
Redondo
,
J. L.
,
Berenguel
,
M.
,
Álvarez
,
J. D.
, and
Ortigosa
,
P. M.
,
2017
, “
Review of Software for Optical Analyzing and Optimizing Heliostat Fields
,”
Renewable Sustainable Energy Rev.
,
72
(
5
), pp.
1001
1018
.
26.
Rizvi
,
A. A.
, and
Yang
,
D.
,
2022
, “
A Detailed Account of Calculation of Shading and Blocking Factor of a Heliostat Field
,”
Renewable Energy
,
181
(
1
), pp.
292
303
.
27.
Grigoriev
,
V.
,
Milidonis
,
K.
,
Corsi
,
C.
, and
Blanco
,
M.
,
2022
, “
Heliostat Fields With a Balanced Mirror Density
,”
Sol. Energy
,
243
(
9A
), pp.
336
347
.
28.
Cui
,
D. Y.
,
Bian
,
H.
, and
Yu
,
H. Z.
,
2024
, “
Quickly Select Heliostat Candidates and Design Pattern-Free Layout Using Geometric Projection Method
,”
Renewable Energy
,
237
(
Part B
), p.
121654
.
29.
Zhang
,
M. L.
,
Yang
,
L. J.
,
Xu
,
C.
, and
Du
,
X. Z.
,
2016
, “
An Efficient Code to Optimize the Heliostat Field and Comparisons Between the Biomimetic Spiral and Staggered Layout
,”
Renewable Energy
,
87
(
Part 1
), pp.
720
730
.
30.
Collado
,
F. J.
, and
Guallar
,
J.
,
2013
, “
A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code
,”
Renewable Sustainable Energy Rev.
,
20
(
4
), pp.
142
154
.
31.
Eddhibi
,
F.
,
Ben Amara
,
M.
,
Balghouthi
,
M.
, and
Guizani
,
A.
,
2017
, “
Design and Analysis of a Heliostat Field Layout With Reduced Shading Effect in Southern Tunisia
,”
Int. J. Hydrogen Energy
,
42
(
48
), pp.
28973
28996
.
32.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2015
, “
Optimization of Heliostat Field Layout in Solar Central Receiver Systems on Annual Basis Using Differential Evolution Algorithm
,”
Energy Convers. Manage.
,
95
(
5A
), pp.
1
9
.
33.
Huang
,
W. D.
,
Li
,
H. R.
,
Li
,
L. L.
,
Hu
,
P.
, and
Chen
,
Z. S.
,
2013
, “
Gauss-Legendre Integration of an Analytical Function to Calculate the Optical Efficiency of a Heliostat
,”
Sol. Energy
,
92
(
6
), pp.
7
14
.
34.
Raj
,
M.
, and
Bhattacharya
,
J.
,
2022
, “
An Accurate and Cheaper Method of Estimating Shading and Blocking Losses in a Heliostat Field Through Efficient Filtering, Removal of Double Counting and Parallel Plane Assumption
,”
Sol. Energy
,
243
(
9A
), pp.
469
482
.
35.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
(
9A
), pp.
185
196
.
You do not currently have access to this content.