Abstract

The proliferation of solar homes with photovoltaics and without energy storage promotes the electric power supply–demand mismatch and impedes the higher market adoption of renewable energy in buildings and the decarbonization of the electricity generation industry. Solar buildings with energy storage, the grid-independent buildings, will alleviate this problem. Computations have been performed to determine the required photovoltaic power and energy storage for such homes in a region where air conditioning is vital and consumes substantial electric energy. The methodology of the computations is based on the hourly matching of the electric power demand with solar energy supply considering the improved efficiency and conservation measure effects in the building. The aim is to determine the effect of efficiency measures on required infrastructure (nominal power, required storage, and dissipation) for the transition to renewables. The results show that higher energy efficiency and conservation measures in buildings will have beneficial future consequences by reducing the needed photovoltaics nominal power by 63% and the required energy storage by 73%. A related and welcome consequence is the reduction of dissipation in the storage–regeneration processes by 60%. The computational results strongly support the conclusion that energy efficiency and conservation measures in the households must proceed before or together with the transition to renewable power.

References

1.
IPCC
,
2007
, “Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, Geneva, Switzerland (Report Available From the IPCC Website www.ipcc.ch)
2.
IPCC
,
2022
, “Climate Change 2022: Mitigation of Climate Change” (Report Available From the IPCC Website www.ipcc.ch).
3.
IEA
,
2023
,
Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach—2023 Update
,
IEA publications
,
Paris, France
, https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
4.
Michaelides
,
E. E.
,
2018
,
Energy, the Environment and Sustainability
,
CRC Press
,
Boca Raton, FL
.
5.
Michaelides
,
E. E.
, and
Michaelides
,
D. N.
,
2020
, “
Impact of Nuclear Energy on Fossil Fuel Substitution
,”
Nucl. Eng. Des.
,
366
(
1
), p.
110742
.
6.
Victoria
,
M.
,
Haegel
,
N.
,
Peters
,
I. M.
,
Sinton
,
R.
,
Jager-Waldau
,
A.
,
del Canizo
,
C.
,
Breyer
,
C.
, et al.
,
2021
, “
Solar Photovoltaics Is Ready to Power a Sustainable Future
,”
Joule
,
5
(
5
), pp.
1041
1056
.
7.
Shahsavari
,
A.
, and
Akbari
,
M.
,
2018
, “
Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions
,”
Renew. Sustain. Energy Rev.
,
90
(
1
), pp.
275
291
.
8.
Tsalikis
,
G.
, and
Martinopoulos
,
G.
,
2015
, “
Solar Energy Systems Potential for Nearly Net Zero Energy Residential Buildings
,”
Sol. Energy
,
115
(
1
), pp.
743
756
.
9.
Bryan
,
H.
,
Rallapalli
,
H.
, and
Ho
,
J. J.
,
2010
, “
Designing a Solar Ready Roof: Establishing the Conditions for a High-Performing Solar Installation
,”
Proceedings of the 39th ASES National Solar Conference
,
Phoenix, AZ
,
May 17–22
, Vol. 5, pp.
4081
4110
.
10.
Laveyne
,
J.
,
Bozalakov
,
D.
,
Van Eetvelde
,
G.
, and
Vandevelde
,
L.
,
2020
, “
Impact of Solar Panel Orientation on the Integration of Solar Energy in Low-Voltage Distribution Grids
,”
Int. J. Photoenergy
,
2020
(
1
), p.
2412780
.
11.
Hendron
,
R.
,
Eastment
,
M.
,
Hancock
,
E.
,
Barker
,
G.
, and
Reeves
,
P.
, “
Evaluation of a High-Performance Solar Home in Loveland, Colorado
,”
ASME J. Sol. Energy Eng.
,
129
(
2
), pp.
226
234
.
12.
Torcellini
,
P.
,
Pless
,
S.
,
Deru
,
M.
,
Griffith
,
B.
,
Long
,
N.
, and
Judkoff
,
R.
,
2006
, “
Lessons Learned From Case Studies of Six High-Performance Buildings
,”
National Renewable Energy Laboratory
, Report No. TP-550-37542, www.nrel.gov/docs/fy06osti/37542.pdf
13.
Voss
,
K.
, and
Musall
,
E.
,
2013
,
Net Zero Energy Buildings: International Projects of Carbon Neutrality in Buildings
,
De Gruyter
,
Berlin, Germany
.
14.
California ISO (CAISO)
,
2016
, “
Fast Facts—What the Duck Curve Tells Us About Managing a Green Grid, Report Comm PR/2016
,” https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
15.
Freeman
,
E.
,
Occello
,
D.
, and
Barnes
,
F.
,
2016
, “
Energy Storage for Electrical Systems in the USA
,”
AIMS Energy
,
4
(
6
), pp.
856
875
.
16.
Michaelides
,
E. E.
,
2021
, “
Energy Storage and Installed Wind Capacity Requirements for the Substitution of Fossil Fuels in the Electricity Generation Sector
,”
J. Energy Power Technol.
,
3
(
3
), p.
18
.
17.
Leonard
,
M. D.
, and
Michaelides
,
E. E.
,
2018
, “
Grid-Independent Residential Buildings With Renewable Energy Sources
,”
Energy
,
148C
(
1
), pp.
448
460
.
18.
Bergman
,
N.
, and
Eyre
,
N.
,
2011
, “
What Role for Microgeneration in a Shift to a Low Carbon Domestic Energy Sector in the UK?
Energy Effic.
,
4
(
1
), pp.
335
353
.
19.
Williams
,
N. J.
,
van Dyk
,
E. E.
, and
Vorster
,
F. J.
,
2011
, “
Monitoring Solar Home Systems With Pulse Width Modulation Charge Control.
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021006
.
20.
EIA
,
2024
, “
Household Energy Use in Texas
,”
US Energy Information Administration, US Department of Energy Publications
, https://www.eia.gov/state/data.php?sid=TX
21.
Wang
,
R.
,
He
,
Z.
,
Zhai
,
X.
, and
Lu
,
S.
,
2024
, “
Application and Performance Evaluation of Key Technologies in Green Buildings
,”
Energies
,
17
(
1
), p.
6418
.
22.
Sandoval Aguilar
,
R.
, and
Michaelides
,
E. E.
,
2021
, “
Microgrid for a Cluster of Grid Independent Buildings Powered by Solar and Wind Energy
,”
Appl. Sci.
,
11
(
19
), p.
9214
.
23.
Szpilko
,
D.
,
Fernando
,
X.
,
Nica
,
E.
,
Budna
,
K.
,
Rzepka
,
A.
, and
Lăzăroiu
,
G.
,
2024
, “
Energy in Smart Cities: Technological Trends and Prospects
,”
Energies
,
17
(
1
), p.
6439
.
24.
Wilcox
,
S.
,
2012
, “
National Solar Radiation Database 1991–2010 Update: User’s Manual; Technical Report NREL/TP-5500-54824
,” https://www.nrel.gov/docs/fy12osti/54824.pdf
25.
Skoplaki
,
E.
, and
Palyvos
,
J. A.
,
2009
, “
On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations
,”
Sol. Energy
,
83
(
5
), pp.
614
624
.
26.
Dubey
,
S.
,
Sarvaiya
,
N. J.
, and
Sheshadri
,
B.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review
,”
Energy Procedia.
,
33
(
1
), pp.
311
321
.
27.
Hachim
,
D. M.
,
Al-Manea
,
A.
,
Al-Rbaihat
,
R.
,
Abed
,
Q. A.
,
Sadiq
,
M.
,
Homod
,
R. Z.
, and
Alahmer
,
A.
,
2025
, “
Enhancing the Performance of Photovoltaic Solar Cells Using a Hybrid Cooling Technique of Thermoelectric Generator and Heat Sink
,”
ASME J. Sol. Energy Eng.
,
147
(
2
), p.
021011
.
28.
Huggins
,
R. A.
,
2016
,
Energy Storage—Fundamentals, Materials and Applications
, 2nd ed,
Springer
,
Cham, Switzerland
.
29.
Hadjipaschalis
,
I.
,
Poullikkas
,
A.
, and
Efthimiou
,
V.
,
2009
, “
Overview of Current and Future ES Technologies for Electric Power Applications
,”
Renew. Sustain. Energy Rev.
,
13
(
6–7
), pp.
1513
1522
.
30.
Michaelides
,
E. E.
,
2025
,
Energy Storage: the Gateway to Energy Transition
,
CRC Press
,
Boca Raton, FL
.
31.
Neurosis
,
B.
,
Ploskić
,
A.
,
Chen
,
Y.
,
Ning-Wei Chiu
,
J.
, and
Wang
,
Q.
,
2020
, “
Heat Transfer Model for Energy-Active Windows—An Evaluation of Efficient Reuse of Waste Heat in Buildings
,”
Renew. Energy
,
162
(
1
), pp.
2318
2329
.
32.
Ochsner
,
K.
,
2008
,
Geothermal Heat Pumps—A Guide for Planning and Installing
,
Earthscan
,
London
.
33.
IEA
,
2024
, “
World Energy Investment 2024
,”
2024 IEA publications
,
France
, https://www.iea.org/reports/world-energy-investment-2024
You do not currently have access to this content.