Abstract

A finite element model of a 60-cell monocrystalline silicon glass-polymer photovoltaic module was simulated with ±1.0 kPa and ±2.4 kPa loads applied to the glass to calculate the deformation under load. Cell-to-cell displacements were used to approximate interconnect strain and stress. A mathematical fatigue cycle life relation was fitted to data for the interconnect material (copper), to generate a life prediction at each interconnect location based on the local stress means, reversal extents, and amplitudes. Interconnect stress was found to be significantly asymmetric about zero despite symmetric positive and negative module loads due to laminate thickness offsets about the neutral plane and the effects of module framing. Cycle life results indicated that interconnect fatigue failure was unlikely to occur over a 30-year lifetime of conservative wind and snow load cycles since the typical cell design feature of leaving some unconstrained length between the cell edge and first solder pad increases the effective gauge length and decreases the stress levels below the material endurance limit. Follow-up analyses found that 3.6 mm and 6.4 mm were the minimum unconstrained lengths required to survive the assumed lifetime of wind and snow cycles, respectively, confirming that typical industrial module constructions with 8–15 mm unconstrained lengths should survive conservatively. Notably, large magnitude, low-cycle snow loading was consistently the limiting factor requiring a longer unconstrained interconnect length. Insights and workflows from this study inform module interconnection design limits for survival against mechanical fatigue in deployment environments.

References

1.
Smith
,
B.
,
Woodhouse
,
M.
,
Horowitz
,
K.
,
Silverman
,
T.
,
Zuboy
,
J.
, and
Margolis
,
R.
,
2021
, “
Photovoltaic (PV) Module Technologies: 2020 Benchmark Costs and Technology Evolution Framework Results
,”
National Renewable Energy Laboratory
, Technical Report No. NREL/TP-7A40-78173. https://www.nrel.gov/docs/fy22osti/78-173.pdf
2.
Sadat
,
S. A.
,
Vandewetering
,
N.
, and
Pearce
,
J. M.
,
2024
, “
Mechanical and Economic Analysis of Conventional Aluminum Photovoltaic Module Frames, Frames With Side Holes, and Open-Source Downward-Fastened Frames for Non-Traditional Racking
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
025001
.
3.
Gabor
,
A.
,
Lincoln
,
J.
,
Schneller
,
E.
,
Seigneur
,
H.
,
Janoch
,
R.
,
Anselmo
,
A.
,
Harwood
,
D.
, and
Rowell
,
M.
,
2018
, “
Compressive Stress Strategies for Reduction of Cracked Cell Related Degradation Rates in New Solar Panels and Power Recovery in Damaged Solar Panels
,”
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
,
Waikoloa Village, HI
,
June 10–15
, pp.
2820
2825
.
4.
Bosco
,
N.
,
Springer
,
M.
,
Liu
,
J.
,
Nalin Venkat
,
S.
, and
French
,
R. H.
,
2021
, “
Employing Weibull Analysis and Weakest Link Theory to Resolve Crystalline Silicon PV Cell Strength Between Bare Cells and Reduced- and Full-Sized Modules
,”
IEEE J. Photovolt.
,
11
(
3
), pp.
731
741
.
5.
Kaule
,
F.
,
Wang
,
W.
, and
Schoenfelder
,
S.
,
2014
, “
Modeling and Testing the Mechanical Strength of Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
120
(
Part A
), pp.
441
447
.
6.
Bosco
,
N.
,
Silverman
,
T.
,
Wohlgemuth
,
J.
,
Kurtz
,
S.
,
Inoue
,
M.
,
Sakurai
,
K.
,
Shioda
,
T.
, et al
,
2013
, “
Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue
,”
2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
,
Tampa, FL
,
June 16–21
, pp.
3173
3178
.
7.
Hartley
,
J.
,
2021
, “
Effects of Frame Constraints on Internal Module Damage During Mechanical Load Testing
,”
2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)
,
Fort Lauderdale, FL
,
June 20–25
, pp.
1359
1364
.
8.
Callister
,
W.
, Jr.
,
2006
,
Materials Science and Engineering: An Introduction
, 7th ed.,
Wiley
,
New York
.
9.
Mon
,
G. R.
,
Moore
,
D. M.
, and
Ross
,
R. G.
, Jr
.,
1984
, “
Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
106
(
4
), pp.
379
386
.
10.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley's Mechanical Engineering Design
, 9th ed.,
McGraw-Hill
,
New York
.
11.
Chandran
,
K. S. R.
,
2016
, “
A Physical Model and Constitutive Equations for Complete Characterization of S-N Fatigue Behavior of Metals
,”
Acta Mater.
,
121
, pp.
85
103
.
12.
Hartley
,
J.
,
Owen-Bellini
,
M.
,
Truman
,
T.
,
Maes
,
A.
,
Elce
,
E.
,
Ward
,
A.
,
Khraishi
,
T.
, and
Roberts
,
S.
,
2020
, “
Effects of Photovoltaic Module Materials and Design on Module Deformation Under Load
,”
IEEE J. Photovolt.
,
10
(
3
), pp.
838
843
.
13.
SIERRA Solid Mechanics Team
,
2023
, “
Sierra/Solid Mechanics 5.12 User's Guide
,”
Sandia National Laboratories
, Technical Report No. SAND2023-11993.
14.
Hasan
,
O.
,
Arif
,
A. F. M.
, and
Siddiqui
,
M. U.
,
2014
, “
Finite Element Modeling, Analysis, and Life Prediction of Photovoltaic Modules
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021022
.
15.
International Electrotechnical Commission
,
2016
, “
Technical Specification. Photovoltaic (PV) Modules—Cyclic (Dynamics) Mechanical Load Testing
,” IEC TS 62782. Edition 1.0. Mar. 2016.
16.
International Electrotechnical Commission
,
2016
, “
Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval- Part 2: Test Procedures
,” IEC 61215-2.
17.
Beer
,
F.
,
Johnston
,
E. R.
, and
DeWolf
,
J.
,
2005
,
Mechanics of Materials
, 4th ed.,
McGraw-Hill
,
New York
.
18.
Khraishi
,
T.
, and
Shen
,
Y. L.
,
2013
,
Introductory Continuum Mechanics With Applications to Elasticity
, Revised Edition,
Cognella
,
San Diego, CA
.
19.
ENF Solar
,
2024
, “
Solar Cell Directory
,” ENF Solar Trade Platform and Directory of Solar Companies, https://www.enfsolar.com/pv/cell, Accessed March 2024.
20.
Zuboy
,
J.
,
Springer
,
M.
,
Palmiotti
,
E.
,
Barnes
,
T.
,
Karas
,
J.
,
Smith
,
B.
, and
Woodhouse
,
M.
,
2022
, “
Technology Scouting Report: Reliability Implications of Recent PV Module Technology Trends
,” DuraMAT Webinars,
National Renewable Energy Laboratory
,
Golden, CO
. https://www.nrel.gov/docs/fy22osti/82871.pdf
21.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proc. Am. Soc. Test. Mater.
,
10
, pp.
625
630
.
22.
Wang
,
X. G.
,
Crupi
,
V.
,
Jiang
,
C.
,
Feng
,
E. S.
,
Guglielmino
,
E.
, and
Wang
,
C. S.
,
2017
, “
Energy-Based Approach for Fatigue Life Prediction of Pure Copper
,”
Int. J. Fatigue
,
104
, pp.
243
250
.
23.
Kunz
,
L.
,
Lukáš
,
P.
, and
Svoboda
,
M.
,
2006
, “
Fatigue Strength, Microstructural Stability and Strain Localization in Ultrafine-Grained Copper
,”
Mater. Sci. Eng. A
,
424
(
1–2
), pp.
97
104
.
24.
Tanabe
,
N.
,
Kurosaka
,
A.
,
Suzuki
,
K.
, and
Kohno
,
O.
,
1995
, “
Fatigue of High Purity Copper Wire
,”
J. Phys. IV
,
05
(
C7
), pp.
389
396
.
25.
Phung
,
N. L.
,
Marti
,
N.
,
Blanche
,
A.
,
Ranc
,
N.
,
Favier
,
V.
,
Chrysochoos
,
A.
,
Saintier
,
N.
,
Grégori
,
F.
,
Bacroix
,
B.
, and
Thoquenne
,
G.
,
2013
, “
Very High Cycle Fatigue for Single Phase Ductile Materials: Slip Band Appearance Criterion
,”
Proc. Eng.
,
66
, pp.
615
625
.
26.
Kazymyrovych
,
V.
,
2009
, “
Very High Cycle Fatigue of Engineering Materials: A Literature Review
,”
Karlstad University
. https://www.diva-portal.org/smash/get/diva2:210661/FULLTEXT02.pdf
27.
Whiteside
,
G. T.
,
Kumar
,
P.
,
Khraishi
,
T.
,
Siddique
,
A.
, and
Brink
,
A.
,
2024
, “
Fatigue Studies of Welded Stainless Steel 304L: Effect of Manufacturability and Weld Type, Choice of Fatigue Model, and Comparison to Pristine Material
,”
ASME J. Eng. Mater. Technol.
,
146
(
3
), p.
031002
.
28.
Phillips
,
M.
,
Hartley
,
J.
,
Maes
,
A.
, and
Robinson
,
C.
,
2022
, “
Instrumented Photovoltaic Modules for Environmental Characterization and Simulation Model Validation
,”
Sandia National Laboratories
, Technical Report No. SAND2022-7150.
29.
Brightspot Automation LLC
,
2025
, “
LoadSpot: Solar Panel Crack Detector & Mechanical Load Tester
,” https://www.brightspotautomation.com/products/loadspot, Accessed March 2025.
30.
Shabanov
,
A. P.
,
2005
, “
Mechanism of Fatigue-Crack Growth Under Compressive External Stresses
,”
J. Appl. Mech. Tech. Phys.
,
46
(
6
), pp.
861
866
.
31.
Seigneur
,
H.
,
Schneller
,
E.
,
Lincoln
,
J.
, and
Gabor
,
A.
,
2018
, “
Cyclic Mechanical Loading of Solar Panels—A Field Experiment
,”
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
,
Waikoloa Village, HI
,
June 10–15
, pp.
3810
3814
.
32.
Kresse
,
D.
,
2022
, “
High Wind Speed PV Module Failures
,”
2022 NREL Photovoltaics Reliability Workshop, National Renewable Energy Laboratory
,
Golden, CO
,
Feb. 21–25
, p.
10
.
33.
Deceglie
,
M.
,
Silverman
,
T.
,
Springer
,
M.
,
Young
,
E.
,
Owen-Bellini
,
M.
,
Bosco
,
N.
,
Hobbs
,
W.
,
Fergosi
,
D.
, and
Libby
,
C.
,
2023
, “
Cracked Cells Degrade More Quickly Than Uncracked Cells in Real-World Operation
,”
2023 NREL PV Reliability Workshop, National Renewable Energy Laboratory
,
Golden, CO
,
Feb. 28–Mar. 2
, pp.
329
344
.
34.
National Centers for Environmental Information
,
2024
, “
Time Series Snowfall 1987-06-01–2024-03-25
,”
National Oceanic and Atmospheric Administration
,
Ironwood, MI
. https://www.ncei.noaa.gov/access/past-weather/Ironwood, Accessed March 2024.
35.
Judson
,
A.
, and
Doesken
,
N.
,
2000
, “
Density of Freshly Fallen Snow in the Central Rocky Mountains
,”
Bull. Am. Meteorol. Soc.
,
81
(
7
), pp.
1577
1588
.
You do not currently have access to this content.