Abstract

This study investigates the performance and economic aspects of a novel natural convection solar dryer designed for drying tomato slices. The dryer, featuring a floor area of 0.45×0.80m2 with a north–south orientation, incorporates an optimally inclined solar collector (OISC). The optimization of the dryer tilt enhances the greenhouse effect within the drying cabinet, leading to increased solar radiation intensity during the drying process. The increased total solar radiation input facilitates a more efficient drying rate by elevating both the internal air and crop temperatures. The selection of the optimal inclination angle for the drying cabinet is performed on a monthly and seasonal basis. The drying experiment is conducted at an inclination angle of 0 deg (fully horizontal surface), 23.18 deg (latitude angle), and 37.5 deg (optimum angle). By using OISC on a monthly basis in the natural convection solar dryer, the solar radiation increases by 22% and 5%, respectively, compared to horizontal and latitude inclinations. Additionally, the internal air temperature rises by 42% and 30% during the drying period compared to the ambient air and bottom dryer temperature, saving 24% of the total drying time. This optimized approach holds promise for enhancing the efficiency and economic viability of solar drying processes for tomato slices.

References

1.
Husham Abdulmalek
,
S.
,
Khalaji Assadi
,
M.
,
Al-Kayiem
,
H. H.
, and
Gitan
,
A. A.
,
2018
, “
A Comparative Analysis on the Uniformity Enhancement Methods of Solar Thermal Drying
,”
Energy
,
148
, pp.
1103
1115
.
2.
Prajapati
,
C.
, and
Sheorey
,
T.
,
2022
, “
Environmentally Viable and Economical Feasibility Analysis of Groundnut Under Natural Convection Solar Dryer
,”
Mater. Today Proc.
,
62
(
12
), pp.
6401
6406
.
3.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2018
, “
Thermal Modeling and Drying Kinetics of Gooseberry Drying Inside North Wall Insulated Greenhouse Dryer
,”
Appl. Therm. Eng.
,
130
, pp.
587
597
.
4.
Hamdi
,
I.
,
Kooli
,
S.
,
Elkhadraoui
,
A.
,
Azaizia
,
Z.
,
Abdelhamid
,
F.
, and
Guizani
,
A.
,
2018
, “
Experimental Study and Numerical Modeling for Drying Grapes Under Solar Greenhouse
,”
Renewable Energy
,
127
, pp.
936
946
.
5.
Chauhan
,
P. S.
,
Kumar
,
A.
,
Nuntadusit
,
C.
, and
Banout
,
J.
,
2018
, “
Thermal Modeling and Drying Kinetics of Bitter Gourd Flakes Drying in Modified Greenhouse Dryer
,”
Renewable Energy
,
118
, pp.
799
813
.
6.
Patil
,
R. C.
, and
Gawande
,
R. R.
,
2018
, “
Drying Characteristics of Amla Candy in Solar Tunnel Greenhouse Dryer
,”
J. Food Process Eng.
,
41
(
6
), p.
e12824
.
7.
Barghi Jahromi
,
M. S.
,
Kalantar
,
V.
,
Samimi Akhijahani
,
H.
, and
Kargarsharifabad
,
H.
,
2022
, “
Recent Progress on Solar Cabinet Dryers for Agricultural Products Equipped With Energy Storage Using Phase Change Materials
,”
J. Energy Storage
,
51
, p.
104434
.
8.
Chauhan
,
P. S.
, and
Kumar
,
A.
,
2016
, “
Performance Analysis of Greenhouse Dryer by Using Insulated North-Wall Under Natural Convection Mode
,”
Energy Rep.
,
2
, pp.
107
116
.
9.
Lakshmi
,
D. V. N.
,
Muthukumar
,
P.
,
Layek
,
A.
, and
Nayak
,
P. K.
,
2018
, “
Drying Kinetics and Quality Analysis of Black Turmeric (Curcuma Caesia) Drying in a Mixed Mode Forced Convection Solar Dryer Integrated With Thermal Energy Storage
,”
Renewable Energy
,
120
, pp.
23
34
.
10.
Singh
,
P.
, and
Gaur
,
M. K.
,
2021
, “
Sustainability Assessment of Hybrid Active Greenhouse Solar Dryer Integrated With Evacuated Solar Collector
,”
Curr. Res. Food Sci.
,
4
, pp.
684
691
.
11.
Spall
,
S.
, and
Sethi
,
V. P.
,
2020
, “
Design, Modeling and Analysis of Efficient Multi-rack Tray Solar Cabinet Dryer Coupled With North Wall Reflector
,”
Sol. Energy
,
211
, pp.
908
919
.
12.
Prajapati
,
C.
, and
Sheorey
,
T.
,
2023
, “
Exploring the Efficacy of Natural Convection in a Cabinet Type Solar Dryer for Drying Gooseberries: An Experimental Analysis
,”
J. Agric. Food Res.
,
14
, p.
100684
.
13.
Prajapati
,
C.
, and
Sheorey
,
T.
,
2022
, “
Experimental Study of Solar Drying of Multi-layer Peanuts and Development of Drying Model
,”
J. Food Process. Preserv.
,
46
(
8
), p.
e16779
.
14.
Dash
,
S.
,
Choudhury
,
S.
, and
Dash
,
K. K.
,
2022
, “
Energy and Exergy Analyses of Solar Drying of Black Cardamom (Amomum Subulatom Roxburgh) Using Indirect Type Flat Plate Collector Solar Dryer
,”
J. Food Process Eng.
,
45
(
4
), p.
e14001
.
15.
Ekka
,
J. P.
,
Muthukumar
,
P.
,
Bala
,
K.
,
Kanaujiya
,
D. K.
, and
Pakshirajan
,
K.
,
2021
, “
Performance Studies on Mixed-Mode Forced Convection Solar Cabinet Dryer Under Different Air Mass Flow Rates for Drying of Cluster Fig
,”
Sol. Energy
,
229
, pp.
39
51
.
16.
Das
,
M.
, and
Akpinar
,
E. K.
,
2021
, “
Investigation of the Effects of Solar Tracking System on Performance of the Solar Air Dryer
,”
Renewable Energy
,
167
, pp.
907
916
.
17.
Moghimi
,
P.
,
Rahimzadeh
,
H.
, and
Ahmadpour
,
A.
,
2021
, “
Experimental and Numerical Optimal Design of a Household Solar Fruit and Vegetable Dryer
,”
Sol. Energy
,
214
, pp.
575
587
.
18.
Hossain
,
M. Z.
,
Alam
,
M. M.
,
Hossain
,
M. F. B.
,
Sarker
,
M. S. H.
,
Awal
,
M. A.
, and
Jahan
,
N.
,
2018
, “
Performance Evaluation of a Cabinet Solar Dryer for Drying Red Pepper in Bangladesh
,”
J. Agric. Eng.
,
49
(
2
), pp.
100
109
.
19.
Şevik
,
S.
,
2013
, “
Design, Experimental Investigation and Analysis of a Solar Drying System
,”
Energy Convers. Manage.
,
68
, pp.
227
234
.
20.
Romano
,
G.
,
Kocsis
,
L.
, and
Farkas
,
I.
,
2009
, “
Analysis of Energy and Environmental Parameters During Solar Cabinet Drying of Apple and Carrot
,”
Drying Technol.
,
27
(
4
), pp.
574
579
.
21.
Sreekumar
,
A.
,
Manikantan
,
P. E.
, and
Vijayakumar
,
K. P.
,
2008
, “
Performance of Indirect Solar Cabinet Dryer
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1388
1395
.
22.
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
,
Ramadan
,
M. R. I.
, and
El-Gohary
,
H. G.
,
2002
, “
Experimental Investigation of an Indirect Type Natural Convection Solar Dryer
,”
Energy Convers. Manage.
,
43
(
16
), pp.
2251
2266
.
23.
Lu
,
J.
, and
Hajimirza
,
S.
,
2017
, “
Optimizing Sun-Tracking Angle for Higher Irradiance Collection of PV Panels Using a Particle-Based Dust Accumulation Model With Gravity Effect
,”
Sol. Energy
,
158
, pp.
71
82
.
24.
Kacira
,
M.
,
Simsek
,
M.
,
Babur
,
Y.
, and
Demirkol
,
S.
,
2004
, “
Determining Optimum Tilt Angles and Orientations of Photovoltaic Panels in Sanliurfa, Turkey
,”
Renewable Energy
,
29
(
8
), pp.
1265
1275
.
25.
Jacobson
,
M. Z.
, and
Jadhav
,
V.
,
2018
, “
World Estimates of PV Optimal Tilt Angles and Ratios of Sunlight Incident Upon Tilted and Tracked PV Panels Relative to Horizontal Panels
,”
Sol. Energy
,
169
, pp.
55
66
.
26.
Prajapati
,
C.
, and
Tanuja
,
S.
,
2022
, “Multi-tier Solar Cabinet Dryer Apparatus,” Indian Patent No. 202221049356.
27.
Arabhosseini
,
A.
,
Samimi-Akhijahani
,
H.
, and
Motehayyer
,
M.
,
2019
, “
Increasing the Energy and Exergy Efficiencies of a Collector Using Porous and Recycling System
,”
Renewable Energy
,
132
, pp.
308
325
.
28.
Balouktsis
,
A.
, and
Chassapis
,
D.
,
2002
, “
Design and Testing of a New Solar Tray Dryer
,”
Drying Technol.
,
20
(
6
), pp.
1243
1271
.
29.
Şevik
,
S.
,
Aktaş
,
M.
,
Dolgun
,
E. C.
,
Arslan
,
E.
, and
Tuncer
,
A. D.
,
2019
, “
Performance Analysis of Solar and Solar-Infrared Dryer of Mint and Apple Slices Using Energy-Exergy Methodology
,”
Sol. Energy
,
180
, pp.
537
549
.
30.
Prakash
,
O.
, and
Kumar
,
A.
,
2017
,
Solar Drying Technology: Concept, Design, Testing, Modeling, Economics, and Environment (Green Energy and Technology)
,
Springer
,
New York
.
31.
Neri
,
E.
,
Rugani
,
B.
,
Benetto
,
E.
, and
Bastianoni
,
S.
,
2014
, “
Energy Evaluation vs. Life Cycle-Based Embodied Energy (Solar, Tidal and Geothermal) of Wood Biomass Resources
,”
Ecol. Indic.
,
36
, pp.
419
430
.
32.
Khanlari
,
A.
,
Güler
,
,
Tuncer
,
A. D.
,
Şirin
,
C.
,
Bilge
,
Y. C.
,
Yılmaz
,
Y.
, and
Güngör
,
A.
,
2020
, “
Experimental and Numerical Study of the Effect of Integrating Plus-Shaped Perforated Baffles to Solar Air Collector in Drying Application
,”
Renewable Energy
,
145
, pp.
1677
1692
.
33.
Chauhan
,
P. S.
,
Kumar
,
A.
, and
Nuntadusit
,
C.
,
2018
, “
Thermo-Environomical and Drying Kinetics of Bitter Gourd Flakes Drying Under North Wall Insulated Greenhouse Dryer
,”
Sol. Energy
,
162
, pp.
205
216
.
34.
Singh
,
P.
, and
Gaur
,
M. K.
,
2021
, “
Environmental and Economic Analysis of Novel Hybrid Active Greenhouse Solar Dryer With Evacuated Tube Solar Collector
,”
Sustainable Energy Technol. Assess.
,
47
, pp.
101428
.
35.
Tiwari
,
S.
,
Sahdev
,
R. K.
,
Kumar
,
M.
,
Chhabra
,
D.
,
Tiwari
,
P.
, and
Tiwari
,
G. N.
,
2021
, “
Environmental and Economic Sustainability of PVT Drying System: A Heat Transfer Approach
,”
Environ. Prog. Sustainable Energy
,
40
(
3
), p.
e13535
.
36.
Prakash
,
O.
, and
Kumar
,
A.
,
2014
, “
Application of Artificial Neural Network for the Prediction of Jaggery Mass During Drying Inside the Natural Convection Greenhouse Dryer
,”
Int. J. Ambient Energy
,
35
(
4
), pp.
186
192
.
You do not currently have access to this content.