Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A novel solar collector consisting of a delta–nabla configuration of flow channels is investigated in the present study. In the proposed design, triangular channels connected in series act as an absorber having more exposed area to the sunlight with an ability to store 21 L of water inside it that serves as a sensible energy storage to mitigate the intermittency issues. At the stage of proof of concept, the effectiveness of the novel collector design is not known. Moreover, its performance comparison with the existing solar thermal collector configurations is yet to be explored. Hence, there is a need to develop a comprehensive numerical model that can be used as a design template to predict the performance of the proposed collector configuration in a range of climatic conditions. Therefore, the present study is an attempt to investigate the thermal-hydraulic performance of the proposed collector, and transient numerical simulations are conducted. For accurate prediction, the effects of flowrate, inlet temperature, and irradiative flux on the outlet temperature are analyzed through a parametric study using the real-time data of ambient temperature and solar irradiative flux. The results of the numerical study are used to calculate the derived parameters such as Nusselt number, heat losses, and collector thermal efficiency by varying the water flowrate. The study shows that the heat transfer characteristics increase with an increase in flowrate and the collector can operate up to overall efficiencies between 29% and 62% at flowrates ranging from 0.1 to 0.8 L/min in winter. Moreover, the numerical model has predicted improved thermal performance of the proposed delta–nabla configurations when compared with a conventional solar collector design.

References

1.
Selmi
,
M.
,
Al-Khawaja
,
M. J.
, and
Marafia
,
A.
,
2008
, “
Validation of CFD Simulation for Flat Plate Solar Energy Collector
,”
Renewable Energy
,
33
(
3
), pp.
383
387
.
2.
Siritan
,
M.
,
Vafai
,
K.
,
Kammuang-Lue
,
N.
,
Terdtoon
,
P.
, and
Sakulchangsatjatai
,
P.
,
2023
, “
An Innovative Design for a Solar Water Heating System Utilizing a Flat-Shaped Heat Pipe
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051002
.
3.
Saeed
,
H.
,
Mahmood
,
M.
,
Nazir
,
H.
,
Waqas
,
A.
,
Ahmad
,
N.
,
Ali
,
M.
,
Haseeb
,
A.
, and
Sajid
,
M. B.
,
2023
, “
Performance Evaluation of an Evacuated Flat-Plate Collector System for Domestic Hot Water Applications
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051006
.
4.
Silva
,
F. A. S.
, and
Salviano
,
L. O.
,
2019
, “
Heat Transfer Enhancement in a Flat-Plate Solar Water Heater Through Longitudinal Vortex Generator
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041003
.
5.
Kalogirou
,
S. A.
,
2015
, “
Building Integration of Solar Renewable Energy Systems Towards Zero or Nearly Zero Energy Buildings
,”
Int. J. Low Carbon Technol.
,
10
(
4
), pp.
379
385
.
6.
Garg
,
H. P.
, and
Prakash
,
J.
,
1997
,
Solar Energy: Fundamentals and Applications
,
Tata McGraw-Hill Education
,
Noida, India
.
7.
Hottel
,
H. C.
, and
Woertz
,
B. B.
,
1942
, “
The Performance of Flat-Plate Solar-Heat Collectors
,”
ASME Trans. Am. Soc. Mech. Eng.
,
64
(
2
), pp.
91
103
.
8.
Hottel
,
H. C.
, and
Whillier
,
A.
,
1955
, “
Evaluation of Flat-Plate Solar Collector Performance
,”
Trans. Conf. Use Solar Energy
,
2
, pp.
74
104
. https://www.osti.gov/biblio/5057828
9.
Ramlow
,
B.
, and
Nusz
,
B.
,
2006
,
Solar Water Heating: a Comprehensive Guide to Solar Water and Space Heating Systems
,
New Society Publishers
. https://books.google.fi/books?id=mxEOIqUCfq4C
10.
Morse
,
R. N.
,
1959
, “
2 Solar Energy Research: Some Australian Investigations
,”
Sol. Energy
,
3
(
3
), pp.
26
28
.
11.
Gupta
,
C. L.
, and
Garg
,
H. P.
,
1967
, “
Performance Studies on Solar Air Heaters
,”
Sol. Energy
,
11
(
1
), pp.
25
31
.
12.
Assari
,
M. R.
,
Basirat Tabrizi
,
H.
,
Kavoosi
,
H.
, and
Moravej
,
M.
,
2007
, “
Design and Performance of Dual Purpose Solar Collector
,”
Proceedings of the Third International Energy, Exergy and Environment Symposium IEEES3
,
Évora, Portugal
,
July 1–5
.
13.
Assari
,
M. R.
,
Basirat Tabrizi
,
H.
, and
Jafari
,
I.
,
2011
, “
Experimental and Theoretical Investigation of Dual Purpose Solar Collector
,”
Sol. Energy
,
85
(
3
), pp.
601
608
.
14.
Shandal
,
J.
,
Abed
,
Q. A.
, and
Al-Shamkhee
,
D. M.
,
2020
, “
Simulation Analysis of Thermal Performance of the Solar Air/Water Collector by Using Computational Fluid Dynamics
,”
Ninth International Conference on Thermal Equipments, Renewable Energy and Rural Development, EDP Sciences
,
Constanta, Romania
,
June 26–27
.
15.
Álvarez
,
A.
,
Tarrío-Saavedra
,
J.
,
Zaragoza
,
S.
,
López-Beceiro
,
J.
,
Artiaga
,
R.
,
Naya
,
S.
, and
Álvarez
,
B.
,
2016
, “
Numerical and Experimental Study of a Corrugated Thermal Collector
,”
Case Stud. Therm. Eng.
,
8
, pp.
41
50
.
16.
Ahmed
,
H.
,
Najib
,
A.
,
Zaidi
,
A. A.
,
Naseer
,
M. N.
, and
Kim
,
B.
,
2022
, “
Modeling, Design Optimization and Field Testing of a Solar Still With Corrugated Absorber Plate and Phase Change Material for Karachi Weather Conditions
,”
Energy Rep.
,
8
, pp.
11530
11546
.
17.
Yassen
,
T. A.
,
Mokhlif
,
N. D.
, and
Eleiwi
,
M. A.
,
2019
, “
Performance Investigation of an Integrated Solar Water Heater With Corrugated Absorber Surface for Domestic Use
,”
Renewable Energy
,
138
, pp.
852
860
.
18.
Bhowmik
,
H.
, and
Amin
,
R.
,
2017
, “
Efficiency Improvement of Flat Plate Solar Collector Using Reflector
,”
Energy Rep.
,
3
, pp.
119
123
.
19.
Visa
,
I.
,
Moldovan
,
M.
, and
Duta
,
A.
,
2019
, “
Novel Triangle Flat Plate Solar Thermal Collector for Facades Integration
,”
Renewable Energy
,
143
, pp.
252
262
.
20.
Sonawane
,
C.
,
Alrubaie
,
A. J.
,
Panchal
,
H.
,
Chamkha
,
A. J.
,
Jaber
,
M. M.
,
Oza
,
A. D.
,
Zahmatkesh
,
S.
,
Burduhos-Nergis
,
D. D.
, and
Burduhos-Nergis
,
D. P.
,
2022
, “
Investigation on the Impact of Different Absorber Materials in Solar Still Using CFD Simulation—Economic and Environmental Analysis
,”
Water
,
14
(
19
), p.
3031
.
21.
Sonawane
,
C. R.
,
Panchal
,
H. N.
,
Hoseinzadeh
,
S.
,
Ghasemi
,
M. H.
,
Alrubaie
,
A. J.
, and
Sohani
,
A.
,
2022
, “
Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled
,”
Energies
,
15
(
14
), p.
5279
.
22.
Rani
,
P.
, and
Tripathy
,
P. P.
,
2022
, “
Heat Transfer Augmentation of Flat Plate Solar Collector Through Finite Element-Based Parametric Study
,”
J. Therm. Anal. Calorim.
,
147
(
1
), pp.
639
660
.
23.
Avargani
,
V. M.
,
Rahimi
,
A.
, and
Divband
,
M.
,
2020
, “
Coupled Optical and Thermal Analyses of a New Type of Solar Water Heaters Using Parabolic Trough Reflectors
,”
Sustain. Energy Technol. Assess.
,
40
, p.
100780
.
24.
Yehualashet
,
K. N.
,
Fatoba
,
O.
, and
Asfaw
,
S. M.
,
2022
, “
Experimental Study and Numerical Analysis of Thermal Performance of Corrugated Plate Solar Collector
,”
Mater. Today: Proc.
,
62
(
Part 6
), pp.
2849
2856
.
25.
Alomar
,
O. R.
,
Abd
,
H. M.
, and
Mohamed Salih
,
M. M.
,
2022
, “
Efficiency Enhancement of Solar air Heater Collector by Modifying Jet Impingement With v-Corrugated Absorber Plate
,”
J. Energy Storage
,
55
(
Part B
), p.
105535
.
26.
Tariq
,
M. H.
,
Khan
,
F.
, and
Cheema
,
T. A.
,
2021
, “
Analytical and Experimental Investigation of a Triangular-Channeled Solar Water Heater
,”
Eng. Proc.
,
12
(
1
), p.
17
.
27.
Khan
,
F.
,
Cheema
,
T. A.
,
Tariq
,
M. H.
,
Abbas
,
A.
,
Amber
,
K. P.
, and
Park
,
C. W.
,
2023
, “
Performance Evaluation of Delta-Nabla Channel Configuration in a Solar Absorber With Thermal Energy Storage
,”
J. Energy Storage
,
65
, p.
107355
.
28.
Goswami
,
D. Y.
,
2022
,
Principles of Solar Engineering
,
CRC Press
,
Boca Raton, FL
.
29.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2013
,
Fluid Mechanics Fundamentals and Applications
,
McGraw-Hill Higher Education
,
Chicago
.
30.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
,
Wiley
,
New York
.
31.
COMSOL Multiphysics
,
2020
,
V 5.6–Heat Transfer Module-User Guide
,
COMSOL Inc.
,
Stockholm, Sweden
.
32.
Greve
,
A.
, and
Bremer
,
M.
,
2010
,
Thermal Design and Thermal Behaviour of Radio Telescopes and Their Enclosures
,
Astrophysics and Space Science Library, Springer
,
Berlin, Heidelberg, Germany
.
33.
Waqas
,
A.
, and
Athar
,
H.
,
2018
, “
Observed Diurnal Temperature Range Variations and Its Association With Observed Cloud Cover in Northern Pakistan
,”
Int. J. Climatol.
,
38
(
8
), pp.
3323
3336
.
34.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
35.
Garg
,
H. P.
, and
Datta
,
G.
,
1984
, “
The top Loss Calculation for Flat Plate Solar Collectors
,”
Sol. Energy
,
32
(
1
), pp.
141
143
.
36.
Roman
,
A.
,
2016–2017
, “
Pakistan – Solar Radiation Measurement Data
,” World Bank Group, https://energydata.info/dataset/pakistan-solar-radiation-measurement-data.
You do not currently have access to this content.