Graphical Abstract Figure

The Non-Intrusive Optical (NIO) approach uses UAS-based imaging to survey heliostats in power tower CSP plants and characterize their optical errors

Graphical Abstract Figure

The Non-Intrusive Optical (NIO) approach uses UAS-based imaging to survey heliostats in power tower CSP plants and characterize their optical errors

Close modal

Abstract

Optics plays a major role in the effectiveness of concentrating solar power (CSP) technologies. The nonintrusive optical (NIO) approach developed by the National Renewable Energy Laboratory uses uncrewed aircraft system (UAS)-based imaging to survey heliostats in a commercial-scale power tower CSP plant and characterize their optical errors. The image processing algorithm uses photogrammetry to calculate the camera position for each image frame, and the accuracy of the estimated optical errors is highly sensitive to the calculated camera position accuracy. In this study, we simulate a series of case studies in python to examine the impact of different parameters of the sensitivity of the camera calculation, including the number of facet corners used as control points for the photogrammetric calculation, precision error in the detected pixel locations of the facet corners in the image, and precision error of the canting and mounting positions of the facets of the heliostat. The case studies consider heliostat geometry based on three commercial designs to serve as representative examples of different possible sizes of heliostats that the NIO method could be applied to. The results show that increasing the number of control points can improve accuracy for heliostats with many facets, pixel precision has a significantly larger impact on camera calculation accuracy than facet canting and mounting errors, and the camera distance and focal length must be chosen to ensure adequate pixel accuracy on the heliostat surface depending on the size of heliostat. Based on the results, recommendations for the allowable values of each parameter are provided to achieve the required NIO optical error estimation accuracy depending on the size of heliostat.

References

1.
Energy.gov
, “IVANPAH.” https://www.energy.gov/lpo/ivanpah, Accessed August 2, 2023.
2.
Kincaid
,
N.
,
Mungas
,
G.
,
Kramer
,
N.
,
Wagner
,
M.
, and
Zhu
,
G.
,
2018
, “
An Optical Performance Comparison of Three Concentrating Solar Power Collector Designs in Linear Fresnel, Parabolic Trough, and Central Receiver
,”
Appl. Energy
,
231
, pp.
1109
1121
.
3.
Blackmon
,
J. B.
,
1985
, “
Development and Performance of a Digital Image Radiometer for Heliostat Evaluation at Solar One
,”
ASME J. Sol. Energy Eng.
,
107
(
4
), pp.
315
321
.
4.
Belhomme
,
B.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
, and
Ulmer
,
S.
,
2009
, “
A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031002
.
5.
Arqueros
,
F.
,
Jiménez
,
A.
, and
Valverde
,
A.
,
2003
, “
A Novel Procedure for the Optical Characterization of Solar Concentrators
,”
Sol. Energy
,
75
(
2
), pp.
135
142
.
6.
King
,
D.
,
1982
, “Beam Quality and Tracking-Accuracy Evaluation of Second-Generation and Barstow Production Heliostats,” SAND82-0181, 6969975, ON: DE82022224, Sandia National Laboratories, Albuquerque, NM. https://www.osti.gov/servlets/purl/6969975/.
7.
Strachan
,
J. W.
,
1992
, “
Revisiting the BCS, a Measurement System for Characterizing the Optics of Solar Collectors
,”
Presented at the 39th International Instrumentation Symposium
,
Albuquerque, NM
,
May 2–6, 1993
, pp.
2
6
.
8.
Strachan
,
J. W.
, and
Houser
,
R. M.
,
1993
, “Testing and Evaluation of Large-Area Heliostats for Solar Thermal Applications,” SAND-92-1381, Sandia National Laboratories, Albuquerque, NM. https://www.osti.gov/biblio/10177805.
9.
Ulmer
,
S.
,
März
,
T.
,
Prahl
,
C.
,
Reinalter
,
W.
, and
Belhomme
,
B.
,
2011
, “
Automated High Resolution Measurement of Heliostat Slope Errors
,”
Sol. Energy
,
85
(
4
), pp.
681
687
.
10.
Goldberg
,
N.
, and
Zisken
,
A.
,
2015
, “
Heliostat Surface Estimation by Image Processing
,”
Energy Procedia
,
69
, pp.
1885
1894
.
11.
Goldberg
,
N.
,
Kroyzer
,
G.
,
Hayut
,
R.
,
Schwarzbach
,
J.
,
Eitan
,
A.
, and
Pekarsky
,
S.
,
2015
, “
Embedding a Visual Range Camera in a Solar Receiver
,”
Energy Procedia
,
69
, pp.
1877
1884
.
12.
Prahl
,
C.
,
Stanicki
,
B.
,
Hilgert
,
C.
,
Ulmer
,
S.
, and
Röger
,
M.
,
2013
, “
Airborne Shape Measurement of Parabolic Trough Collector Fields
,”
Sol. Energy
,
91
, pp.
68
78
.
13.
Röger
,
M.
,
Prahl
,
C.
, and
Ulmer
,
S.
,
2010
, “
Heliostat Shape and Orientation by Edge Detection
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021002
.
14.
Krauth
,
J. J.
,
Happich
,
C.
,
Algner
,
N.
,
Broda
,
R.
,
Kämpgen
,
A.
,
Schnerring
,
A.
,
Ulmer
,
S.
, and
Röger
,
M.
,
2024
, “
HelioPoint – A Fast Airborne Calibration Method for Heliostat Fields
,”
ASME J. Sol. Energy Eng.
,
146
(
6
), p.
061005
.
15.
Jessen
,
W.
,
Röger
,
M.
,
Prahl
,
C.
, and
Pitz-Paal
,
R.
,
2022
, “
A Two-Stage Method for Measuring the Heliostat Offset
,”
AIP Conf. Proc.
,
2445
(
1
), p.
070005
.
16.
Mitchell
,
R. A.
, and
Zhu
,
G.
,
2020
, “
A Non-Intrusive Optical (NIO) Approach to Characterize Heliostats in Utility-Scale Power Tower Plants: Methodology and In-Situ Validation
,”
Sol. Energy
,
209
, pp.
431
445
.
17.
Mitchell
,
R. A.
, and
Zhu
,
G.
,
2020
, “
A Non-Intrusive Optical (NIO) Approach to Characterize Heliostats in Utility-Scale Power Tower Plants: Sensitivity Study
,”
Sol. Energy
,
207
, pp.
450
457
.
18.
Farrell
,
T.
,
Guye
,
K.
,
Mitchell
,
R.
, and
Zhu
,
G.
,
2021
, “
A Non-Intrusive Optical Approach to Characterize Heliostats in Utility-Scale Power Tower Plants: Flight Path Generation/Optimization of Unmanned Aerial Systems
,”
Sol. Energy
,
225
, pp.
784
801
.
19.
Shortis
,
M. R.
, and
Johnston
,
G. H. G.
,
1996
, “
Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part I: Measurements of Surfaces
,”
ASME J. Sol. Energy Eng.
,
118
(
3
), pp.
146
150
.
20.
Python documentation
, “The Python Language Reference.” https://docs.python.org/3/reference/index.html. Accessed August 3, 2023.
21.
Smorkalov
,
A.
,
2024
, “GitHub – Opencv/Opencv-Python: Automated CI Toolchain to Produce Precompiled Opencv-Python, Opencv-Python-Headless, Opencv-Contrib-Python and Opencv-Contrib-Python-Headless Packages.” https://github.com/opencv/opencv-python, Accessed August 3, 2023.
22.
Smorkalov
,
A.
,
2024
, “OpenCV: Perspective-n-Point (PnP) Pose Computation.” https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html. Accessed July 24, 2023.
23.
Weisstein
,
E. W.
, “Circle Point Picking.” https://mathworld.wolfram.com/, Accessed August 1, 2024.
24.
Weisstein
,
E. W.
, “Sphere Point Picking.” https://mathworld.wolfram.com/, Accessed June 5, 2024.
You do not currently have access to this content.