Abstract

A novel high-temperature particle solar receiver is developed using a light trapping planar cavity configuration. As particles fall through the cavity, the concentrated solar radiation warms the boundaries of the receiver and in turn heats the particles. Particles flow through the system, forming a fluidized bed at the lower section, leaving the system from the bottom at a constant flowrate. Air is introduced to the system as the fluidizing medium to improve particle heat transfer and mixing. A laboratory scale cavity receiver is built by collaborators at the Colorado School of Mines and their data are used for model validation. In this experimental setup, near IR quartz lamp is used to provide flux to the vertical wall of the heat exchanger. The system is modeled using the discrete element method and a continuum two-fluid method. The computational model matches the experimental system size and the particle size distribution is assumed monodisperse. A new continuum conduction model that accounts for the effects of solid concentration is implemented, and the heat flux boundary condition matches the experimental setup. Radiative heat transfer is estimated using a widely used correlation during the post-processing step to determine an overall heat transfer coefficient. The model is validated against testing data and achieves less than 30% discrepancy and a heat transfer coefficient greater than 1000 W/m2 K.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
He
,
Y.-L.
,
Qiu
,
Y.
,
Wang
,
K.
,
Yuan
,
F.
,
Wang
,
W.-Q.
,
Li
,
M.-J.
, and
Guo
,
J.-Q.
,
2020
, “
Perspective of Concentrating Solar Power
,”
Energy
,
198
, p.
117373
.
2.
Martinek
,
J.
, and
Ma
,
Z.
,
2015
, “
Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051008
.
3.
Zhang
,
H.
,
Baeyens
,
J.
,
Cáceres
,
G.
,
Degrève
,
J.
, and
Lv
,
Y.
,
2016
, “
Thermal Energy Storage: Recent Developments and Practical Aspects
,”
Prog. Energy Combust. Sci.
,
53
, pp.
1
40
.
4.
Tregambi
,
C.
,
Troiano
,
M.
,
Montagnaro
,
F.
,
Solimene
,
R.
, and
Salatino
,
P.
,
2021
, “
Fluidized Beds for Concentrated Solar Thermal Technologies—A Review
,”
Front. Energy Res.
,
9
.
5.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
6.
Ge
,
Z.
,
Li
,
Y.
,
Li
,
D.
,
Sun
,
Z.
,
Jin
,
Y.
,
Liu
,
C.
,
Li
,
C.
,
Leng
,
G.
, and
Ding
,
Y.
,
2014
, “
Thermal Energy Storage: Challenges and the Role of Particle Technology
,”
Particuology
,
15
, pp.
2
8
.
7.
Ho
,
C. K.
,
2016
, “
A Review of High-Temperature Particle Receivers for Concentrating Solar Power
,”
Appl. Therm. Eng.
,
109
(
Part B
), pp.
958
969
. .
8.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
9.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2016
, “
Pilot-Scale Solar Reactor Operation and Characterization for Fuel Production Via the Zn/ZnO Thermochemical Cycle
,”
Appl. Energy
,
165
, pp.
1004
1023
.
10.
Yin
,
J.
,
Zheng
,
Q.
, and
Zhang
,
X.
,
2020
, “
Heat Transfer Model of a Particle Energy Storage–Based Moving Packed Bed Heat Exchanger
,”
Energy Storage
,
2
(
1
), pp.
2
e113
.
11.
Fosheim
,
J. R.
,
Hernandez
,
X.
,
Abraham
,
J.
,
Thompson
,
A.
,
Jesteadt
,
B.
, and
Jackson
,
G. S.
,
2022
, “
Narrow-Channel Fluidized Beds for Particle-sCO2 Heat Exchangers in Next Generation CPS Plants
,”
AIP Conf. Proc.
,
2445
(
1
), p.
160007
.
12.
Ma
,
Z.
, and
Martinek
,
J.
,
2019
, “
Analysis of Solar Receiver Performance for Chemical-Looping Integration With a Concentrating Solar Thermal System
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021003
.
13.
Morris
,
A.
,
Pannala
,
S.
,
Ma
,
Z.
, and
Hrenya
,
C.
,
2015
, “
A Conductive Heat Transfer Model for Particle Flows Over Immersed Surfaces
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1277
1289
.
14.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T.
,
1993
, “Mfix Documentation Theory Guide.”
15.
Gunn
,
D.
,
1978
, “
Transfer of Heat Or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
16.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.
17.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.
18.
Molerus
,
O.
,
1997
, “
Heat Transfer in Moving Beds With a Stagnant Interstitial Gas
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4151
4159
.
19.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
. .
Scale-Up in Particle Processing
.
20.
Ozkaynak
,
T. F.
, and
Chen
,
J. C.
,
1980
, “
Emulsion Phase Residence Time and Its Use in Heat Transfer Models in Fluidized Beds
,”
AIChE J.
,
26
(
4
), pp.
544
550
.
21.
Strack
,
O.
,
Cundall
,
P.
,
University of Minnesota, Department of Civil and Mineral Engineering, and NSF (U.S.)
,
1978
, The Distinct Element Method as a Tool for Research in Granular Media: Report to the National Science Foundation Concerning NSF Grant ENG75-20711, Vol. 2, Department of Civil and Mineral Engineering, Institute of Technology, University of Minnesota, Minneapolis, MN.
22.
Rong
,
D.
, and
Horio
,
M.
,
1999
, “
DEM Simulations of Char Combustion in a Fluidized Bed
,”
Second International Conference on CFD in the Minerals and Process Industries
,
Melbourne, Australia
,
Dec. 6–8
, pp.
65
70
.
23.
Molerus
,
O.
,
1992
, “
Heat Transfer in Gas Fluidized Beds Part 2. Dependence of Heat Transfer on Gas Velocity
,”
Powder Technol.
,
70
(
1
), pp.
15
20
.
24.
Ergun
,
S.
, and
Orning
,
A. A.
,
1949
, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.
25.
Bagepalli
,
M. V.
,
Yarrington
,
J. D.
,
Schrader
,
A. J.
,
Zhang
,
Z. M.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Measurement of Flow Properties Coupled to Experimental and Numerical Analyses of Dense, Granular Flows for Solar Thermal Energy Storage
,”
Sol. Energy
,
207
, pp.
77
90
.
26.
Ostermeier
,
P.
,
DeYoung
,
S.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2019
, “
Comprehensive Investigation and Comparison of TFM, Densedpm and CFD-DEM for Dense Fluidized Beds
,”
Chem. Eng. Sci.
,
196
, pp.
291
309
.
27.
Adnan
,
M.
,
Sun
,
J.
,
Ahmad
,
N.
, and
Wei
,
J. J.
,
2021
, “
Comparative CFD Modeling of a Bubbling Bed Using a Eulerian–Eulerian Two-Fluid Model (TFM) and a Eulerian-Lagrangian Dense Discrete Phase Model (DDPM)
,”
Powder Technol.
,
383
, pp.
418
442
.
You do not currently have access to this content.