Abstract

We present a proof of concept demonstration of solar thermochemical energy storage on a multiple year time scale. The storage is fungible and can take the form of process heat or hydrogen. We designed and fabricated a 4-kW solar rotary drum reactor to carry out the solar-driven charging step of solar thermochemical storage via metal oxide reduction–oxidation cycles. During the summer of 2019, the solar reactor was operated in the Valparaiso University solar furnace to effect the reduction of submillimeter cobalt oxide particles in air at approximately 1000C. A particle collection system cooled the reduced particles rapidly enough to maintain conversions of 84–94% for feed rates of 2.960.8gmin1. The solar-to-chemical storage efficiency, defined as the enthalpy of the reduction reaction at 1000C divided by the solar energy input, reached 20%. Samples of the reduced cobalt oxide particles were stored in vials in air at room temperature for more than 3 years. The stored solar energy was released by reoxidizing samples in air in a benchtop reactor and by electrochemically reoxidizing samples to produce H2. Measurements of the oxygen uptake by the reduced metal oxide confirm its promise as a medium to store and dispatch solar energy over long durations. Linear sweep voltammetry and bulk electrolysis demonstrate the promise of H2 production at 0.55 V relative to the normal hydrogen electrode, 0.68 V below the 1.23 V potential required for conventional electrolysis.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Neises
,
M.
,
Tescari
,
S.
,
de Oliveira
,
L.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Wong
,
B.
,
2012
, “
Solar-Heated Rotary Kiln for Thermochemical Energy Storage
,”
Sol. Energy.
,
86
(
10
), pp.
3040
3048
.
2.
Agrafiotis
,
C.
,
Pein
,
M.
,
Giasafaki
,
D.
,
Tescari
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Redox Oxides-Based Solar Thermochemistry and Its Materialization to Reactor/Heat Exchanger Concepts for Efficient Solar Energy Harvesting, Transformation and Storage
,”
ASME J. Sol. Energy. Eng.
,
141
(
2
), p.
021010
.
3.
Jackson
,
G. S.
,
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Miller
,
D. C.
, and
Braun
,
R. J.
,
2019
, “
Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power
,”
ASME J. Sol. Energy. Eng.
,
141
(
2
), p.
021016
.
4.
Buck
,
R.
,
Agrafiotis
,
C.
,
Tescari
,
S.
,
Neumann
,
N.
, and
Schmücker
,
M.
,
2021
, “
Techno-Economic Analysis of Candidate Oxide Materials for Thermochemical Storage in Concentrating Solar Power Systems
,”
Front. Energy Res.
,
9
, pp.
1
13
.
5.
Palumbo
,
R.
,
Diver
,
R. B.
,
Larson
,
C.
,
Coker
,
E. N.
,
Miller
,
J. E.
,
Guertin
,
J.
,
Schoer
,
J.
,
Meyer
,
M.
, and
Siegel
,
N. P.
,
2012
, “
Solar Thermal Decoupled Water Electrolysis Process I: Proof of Concept
,”
Chem. Eng. Sci.
,
84
, pp.
372
380
.
6.
Tescari
,
S.
,
Agrafiotis
,
C.
,
Breuer
,
S.
,
de Oliveira
,
L.
,
Puttkamer
,
M. N.-v.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2014
, “
Thermochemical Solar Energy Storage via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts
,”
Energy Procedia
,
49
, pp.
1034
1043
.
7.
Singh
,
A.
,
Tescari
,
S.
,
Lantin
,
G.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Solar Thermochemical Heat Storage via the Co3O4/CoO Looping Cycle: Storage Reactor Modelling and Experimental Validation
,”
Sol. Energy.
,
144
, pp.
453
465
.
8.
Agrafiotis
,
C.
,
Tescari
,
S.
,
Roeb
,
M.
,
Schmücker
,
M.
, and
Sattler
,
C.
,
2015
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat. Part 3: Cobalt Oxide Monolithic Porous Structures as Integrated Thermochemical Reactors/Heat Exchangers
,”
Sol. Energy.
,
114
, pp.
459
475
.
9.
Tescari
,
S.
,
Singh
,
A.
,
Agrafiotis
,
C.
,
de Oliveira
,
L.
,
Breuer
,
S.
,
Schlögl-Knothe
,
B.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant
,”
Appl. Energy.
,
189
, pp.
66
75
.
10.
Schrader
,
A. J.
,
Muroyama
,
A. P.
, and
Loutzenhiser
,
P. G.
,
2015
, “
Solar Electricity via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/CoO Redox Reactions: Thermodynamic Analysis
,”
Sol. Energy.
,
118
, pp.
485
495
.
11.
Schrader
,
A. J.
,
De Dominicis
,
G.
,
Schieber
,
G. L.
, and
Loutzenhiser
,
P. G.
,
2017
, “
Solar Electricity via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/CoO Redox Reactions III: Solar Thermochemical Reactor Design and Modeling
,”
Sol. Energy.
,
150
, pp.
584
595
.
12.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-quantitative Heat Effects Estimations
,”
Sol. Energy.
,
133
, pp.
394
407
.
13.
Zhou
,
X.
,
Mahmood
,
M.
,
Chen
,
J.
,
Yang
,
T.
,
Xiao
,
G.
, and
Ferrari
,
M. L.
,
2019
, “
Validated Model of Thermochemical Energy Storage Based on Cobalt Oxides
,”
Appl. Therm. Eng.
,
159
, p.
113965
.
14.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Solar Energy Eng.
,
135
(
4
), p.
041007
.
15.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy.
,
195
, pp.
152
183
.
16.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2014
, “
Cobalt Oxide-Based Structured Thermochemical Reactors/Heat Exchangers for Solar Thermal Energy Storage in Concentrated Solar Power Plants
,” Proceedings of the ASME 8th International Conference on Energy Sustainability,
American Society of Mechanical Engineers
, p.
V001T02A005
.
17.
Nudehi
,
S.
,
Larson
,
C.
,
Prusinski
,
W.
,
Kotfer
,
D.
,
Otto
,
J.
,
Beyers
,
E.
,
Schoer
,
J.
, and
Palumbo
,
R.
,
2018
, “
Solar Thermal Decoupled Water Electrolysis Process II: An Extended Investigation of the Anodic Electrochemical Reaction
,”
Chem. Eng. Sci.
,
181
, pp.
159
172
.
18.
Silcox
,
R.
,
Engerer
,
L. K.
,
Nudehi
,
S.
,
Smith
,
P.
,
Schoer
,
J.
,
Krenzke
,
P. T.
,
Palumbo
,
R.
, and
Venstrom
,
L. J.
,
2020
, “
Solar Thermal Decoupled Water Electrolysis Process III: The Anodic Electrochemical Reaction in a Rotating Disc Electrode Cell
,”
Chem. Eng. Sci.
,
227
, p.
115885
.
19.
Mills
,
B. H.
,
Ho
,
C. K.
,
Schroeder
,
N. R.
,
Shaeffer
,
R.
,
Laubscher
,
H. F.
, and
Albrecht
,
K. J.
,
2022
, “
Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications
,”
Energies
,
15
(
5
), p.
1657
.
20.
Moumin
,
G.
,
Tescari
,
S.
,
Sundarraj
,
P.
,
de Oliveira
,
L.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Solar Treatment of Cohesive Particles in a Directly Irradiated Rotary Kiln
,”
Sol. Energy.
,
182
, pp.
480
490
.
21.
Tescari
,
S.
,
Moumin
,
G.
,
Bulfin
,
B.
,
De Oliveira
,
L.
,
Schaefer
,
S.
,
Overbeck
,
N.
,
Willsch
,
C.
,
Spenke
,
C.
,
Thelen
,
M.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Experimental and Numerical Analysis of a Solar Rotary Kiln for Continuous Treatment of Particle Material
,”
AIP. Conf. Proc.
,
2033
, pp.
1
8
.
22.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
,
2006
, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy.
,
80
(
5
), pp.
500
511
.
23.
Ebert
,
M.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Rheinländer
,
J.
,
Schlögl-Knothe
,
B.
,
Schmitz
,
S.
,
Sibum
,
M.
,
Stadler
,
H.
, and
Uhlig
,
R.
,
2018
, “
First On-Sun Tests of a Centrifugal Particle Receiver System
,”
ASME 2018 12th International Conference on Energy Sustainability Collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum
,
Lake Buena Vista, FL
,
June 24–28
, p. V001T11A002.
24.
Ebert
,
M.
,
Amsbeck
,
L.
,
Rheinländer
,
J.
,
Schlögl-Knothe
,
B.
,
Schmitz
,
S.
,
Sibum
,
M.
,
Uhlig
,
R.
, and
Buck
,
R.
,
2019
, “
Operational Experience of a Centrifugal Particle Receiver Prototype
,”
AIP. Conf. Proc.
,
2126
(
1
), p.
030018
.
25.
Kopping
,
S. J.
,
Hoeniges
,
J.
,
Greenhagen
,
J.
,
Matejczyk
,
Z.
, and
Venstrom
,
L. J.
,
2019
, “
Model of the Solar-Driven Reduction of Cobalt Oxide in a Particle Suspension Reactor
,”
Sol. Energy.
,
177
, pp.
713
723
.
26.
Palumbo
,
R.
,
Venstrom
,
L. J.
, and
Nudehi
,
S.
,
2022
, “
High-Temperature Solar Thermal Electrochemistry With Metal Oxides
,”
Handbook of Solar Thermal Technologies
,
World Scientific
,
Singapore
, pp.
173
228
.
27.
Duncan
,
G. S.
,
Nudehi
,
S.
,
Palumbo
,
R.
, and
Venstrom
,
L. J.
,
2014
, “
A High-Flux Solar Furnace for Undergraduate Engineering Education and High-Temperature Thermochemistry Research
,” Proceedings of the ASME 8th International Conference on Energy Sustainability, Vol.
1
, pp.
1
7
.
28.
Lipinski
,
W.
,
Davidson
,
J. H.
,
Haussener
,
S.
,
Klausner
,
J. F.
,
Mehdizadeh
,
A. M.
,
Petrasch
,
J.
,
Steinfeld
,
A.
, and
Venstrom
,
L.
,
2013
, “
Review of Heat Transfer Research for Solar Thermochemical Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021005
.
29.
Krenzke
,
P. T.
,
2023
, “
Demonstration of Multiyear Solar Thermochemical Energy Storage via the Cobalt Oxide Cycle
,” ValpoScholar: Engineering Faculty Publications, Patents, Presentations, Video, 10:23, https://scholar.valpo.edu/engineering_fac_pub/123.
You do not currently have access to this content.