Abstract

This study utilizes the large eddy simulation model (LES) and a synthetic method based on the Fourier technique called consistent discrete random flow generation (CDRFG) to analyze the peak aerodynamic loads on heliostats due to the atmospheric boundary layer. With the CDRFG technique, key flow parameters, including mean velocity profile, turbulent intensities, integral length scales, and turbulent spectra generated in wind tunnels, can be replicated while also satisfying the divergence-free condition. A three-facet heliostat with an elevation angle of α = 45 deg and the rear aligned to the inflow was analyzed. The heliostat behaves like a lifting surface in this orientation, accentuating the aerodynamic effect. The methodology proposed in this study can accurately reproduce flow statistics and predict the peak loads. Compared to experimental data, differences of 2.62% for drag, 7.43% for lift, and 11.0% for overturning were observed. Furthermore, the simulation reveals the generation of wingtip vortices on the sides of the heliostat, which contribute to the aerodynamic load. Overall, this technique has been demonstrated to be effective in replicating the atmospheric boundary layer and predicting the aerodynamic coefficients of heliostats.

References

1.
Slootweg
,
M.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2019
, “
A Computational Approach to Simulate the Optical and Thermal Performance of a Novel Complex Geometry Solar Tower Molten Salt Cavity Receiver
,”
Sol. Energy
,
187
(
1
), pp.
13
29
.
2.
IRENA
,
2012
,
Renewable Energy Technologies: Cost Analysis Series Concentrating Solar Power Volume 1: Power Sector Issue 2/5 Acknowledgement
,
IRENA
, Abu Dhabi, United Arab Emirates.
3.
Jones
,
S.
,
Lumia
,
R.
,
Davenport
,
R.
,
Thomas
,
R.
,
Gorman
,
D.
,
Kolb
,
G.
, and
Donnelly
,
M.
,
2007
, “Heliostat Cost Reduction Study,” Sandia National Laboratories, Albuquerque, NM, and Livermore, CA.
4.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
(
1
), pp.
3
37
.
5.
Yuan
,
J. K.
,
Christian
,
J. M.
, and
Ho
,
C. K.
,
2015
, “
Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021016
.
6.
Griffith
,
D. T.
,
Moya
,
A. C.
,
Ho
,
C. K.
, and
Hunter
,
P. S.
,
2015
, “
Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021010
.
7.
Vásquez-Arango
,
J. F.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051001
.
8.
Sosa-Flores
,
P.
,
Hinojosa
,
J. F.
, and
Duran
,
R. L.
,
2022
, “
Computational Fluid Dynamics Study of the Rear Geometry Influence on Aerodynamic Load Coefficients of Heliostats in Stow Position
,”
Sol. Energy
,
241
(
1
), pp.
130
156
.
9.
Ji
,
B.
,
Xing
,
P.
,
Xu
,
F.
,
Xiong
,
Q.
,
Qiu
,
P.
,
Liu
,
Q.
, and
Tan
,
D.
,
2023
, “
Transient Evaluation of Wind-Induced Vibration Response of Heliostat Under Downburst
,”
Energy Technol.
,
11
(
8
), p.
2300156
.
10.
Emes
,
M. J.
,
Jafari
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2020
, “
The Influence of Atmospheric Boundary Layer Turbulence on the Design Wind Loads and Cost of Heliostats
,”
Sol. Energy
,
207
(
1
), pp.
796
812
.
11.
Hamanah
,
W. M.
,
Salem
,
A. S.
,
Abido
,
M. A.
,
Al-Sulaiman
,
F. A.
,
Qwbaiban
,
A. M.
, and
Habetler
,
T. G.
,
2022
, “
Modeling, Implementing, and Evaluating of an Advanced Dual Axis Heliostat Drive System
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041001
.
12.
Peterka
,
J. A.
,
Hosoya
,
N.
,
Bienkiewicz
,
B.
, and
Cermak
,
J. E.
,
1986
, “
Wind Load Reduction for Heliostats
,” Solar Energy Research Institute, Golden, CO.
13.
Peterka
,
J. A.
,
Bienkiewicz
,
B.
,
Hosoya
,
N.
, and
Cermak
,
J. E.
,
1987
, “
Heliostat Mean Wind Load Reduction
,”
Energy
,
12
(
3
), pp.
261
267
.
14.
Peterka
,
J. A.
,
Tan
,
Z.
,
Cermak
,
J. E.
, and
Bienkiewicz
,
B.
,
1989
, “
Mean and Peak Wind Loads on Heliostats
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
158
164
.
15.
Pfahl
,
A.
, and
Uhlemann
,
H.
,
2011
, “
Wind Loads on Heliostats and Photovoltaic Trackers at Various Reynolds Numbers
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
9
), pp.
964
968
.
16.
Xiong
,
Q.
,
Li
,
Z.
,
Luo
,
H.
, and
Zhao
,
Z.
,
2019
, “
Wind Tunnel Test Study on Wind Load Coefficients Variation Law of Heliostat Based on Uniform Design Method
,”
Sol. Energy
,
184
(
1
), pp.
209
229
.
17.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments Due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
(
1
), pp.
604
617
.
18.
Jafari
,
A.
,
Ghanadi
,
F.
,
Emes
,
M. J.
,
Arjomandi
,
M.
, and
Cazzolato
,
B. S.
,
2019
, “
Measurement of Unsteady Wind Loads in a Wind Tunnel: Scaling of Turbulence Spectra
,”
J. Wind Eng. Ind. Aerodyn.
,
193
(
1
), p.
103955
.
19.
Jafari
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Emes
,
M. J.
, and
Cazzolato
,
B. S.
,
2019
, “
Correlating Turbulence Intensity and Length Scale With the Unsteady Lift Force on Flat Plates in an Atmospheric Boundary Layer Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
189
(
1
), pp.
218
230
.
20.
Emes
,
M. J.
,
Jafari
,
A.
, and
Arjomandi
,
M.
,
2022
, “
A Feasibility Study on the Application of Mesh Grids for Heliostat Wind Load Reduction
,”
Sol. Energy
,
240
(
1
), pp.
121
130
.
21.
Vasilopoulos
,
K.
,
Lekakis
,
I.
,
Sarris
,
I. E.
, and
Tsoutsanis
,
P.
,
2021
, “
Large Eddy Simulation of Dispersion of Hazardous Materials Released From a Fire Accident Around a Cubical Building
,”
Environ. Sci. Pollut. Res.
,
28
(
36
), pp.
50363
50377
.
22.
Zaki
,
A.
, and
Sharma
,
R.
,
2021
, “
The Effect of External Airflows on Ventilation With a Rooftop Windcatcher
,”
J. Wind Eng. Ind. Aerodyn.
,
219
(
1
), p.
104799
.
23.
Buffa
,
E.
,
Jacob
,
J.
, and
Sagaut
,
P.
,
2021
, “
Lattice-Boltzmann-Based Large-Eddy Simulation of High-Rise Building Aerodynamics With Inlet Turbulence Reconstruction
,”
J. Wind Eng. Ind. Aerodyn.
,
212
(
1
), p.
104560
.
24.
Antonini
,
E. G. A.
,
Romero
,
D. A.
, and
Amon
,
C. H.
,
2018
, “
Analysis and Modifications of Turbulence Models for Wind Turbine Wake Simulations in Atmospheric Boundary Layers
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031007
.
25.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031001
.
26.
Yang
,
M.
,
Zhi
,
L.
,
Liu
,
H.
,
Zhu
,
Y.
, and
Taylor
,
R. A.
,
2022
, “
Wind Load Similarity Relations for Parabolic Trough Collectors
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031002
.
27.
Abedi
,
H.
,
Nebenführ
,
B.
, and
Davidson
,
L.
,
2022
, “
Assessment of Wind Field Generation Methods on Predicted Wind Turbine Power Production Using a Free Vortex Filament Wake Approach
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021010
.
28.
Pratapa
,
P. P.
,
Nguyen
,
H. H.
, and
Manuel
,
L.
,
2023
, “
A Computational Model to Simulate Thunderstorm Downbursts for Wind Turbine Loads Analysis
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021002
.
29.
Blocken
,
B.
,
Stathopoulos
,
T.
, and
Carmeliet
,
J.
,
2007
, “
CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems
,”
Atmos Environ
,
41
(
2
), pp.
238
252
.
30.
Parente
,
A.
,
Gorlé
,
C.
,
van Beeck
,
J.
, and
Benocci
,
C.
,
2011
, “
Improved K-ɛ Model and Wall Function Formulation for the RANS Simulation of ABL Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
267
278
.
31.
Cindori
,
M.
,
Juretić
,
F.
,
Kozmar
,
H.
, and
Džijan
,
I.
,
2018
, “
Steady RANS Model of the Homogeneous Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
173
(
1
), pp.
289
301
.
32.
Morales Garza
,
V. G.
,
Sumner
,
J.
,
Nathan
,
J.
, and
Masson
,
C.
,
2019
, “
Evaluating the Accuracy of RANS Wind Flow Modeling Over Forested Terrain—Part 1: Canopy Model Validation
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041009
.
33.
Morales Garza
,
V. G.
,
Sumner
,
J.
,
Nathan
,
J.
, and
Masson
,
C.
,
2019
, “
Evaluating the Accuracy of RANS Wind Flow Modeling Over Forested Terrain. Part 2: Impact on Capacity Factor for Moderately Complex Topography
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021006
.
34.
Huang
,
S. H.
,
Li
,
Q. S.
, and
Wu
,
J. R.
,
2010
, “
A General Inflow Turbulence Generator for Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
10
), pp.
600
617
.
35.
Ji
,
B.
,
Lei
,
W.
, and
Xiong
,
Q.
,
2022
, “
An Inflow Turbulence Generation Method for Large Eddy Simulation and Its Application on a Standard High-Rise Building
,”
J. Wind Eng. Ind. Aerodyn.
,
226
(
1
), p.
105048
.
36.
Yan
,
B. W.
, and
Li
,
Q. S.
,
2015
, “
Inflow Turbulence Generation Methods With Large Eddy Simulation for Wind Effects on Tall Buildings
,”
Comput. Fluids
,
116
(
1
), pp.
158
175
.
37.
Yoshikawa
,
M.
, and
Tamura
,
T.
,
2012
, “
LES for Wind Load Estimation by Unstructured Grid System
,”
The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7)
,
Shanghai, China
,
Sept. 2–6
, pp.
1960
1965
.
38.
Asgari
,
E.
,
Saeedi
,
M.
, and
Etemadi
,
M.
,
2022
, “
Large-Eddy Simulation of a Developing Turbulent Boundary Layer Over a Wall-Mounted Hemisphere Under the Influence of a Surrounding Ditch: Flow Characteristics and Aerodynamic Forces
,”
J. Wind Eng. Ind. Aerodyn.
,
227
(
1
), pp.
105047
.
39.
McMullan
,
W. A.
, and
Angelino
,
M.
,
2022
, “
The Effect of Tree Planting on Traffic Pollutant Dispersion in an Urban Street Canyon Using Large Eddy Simulation With a Recycling and Rescaling Inflow Generation Method
,”
J. Wind Eng. Ind. Aerodyn.
,
221
(
1
), pp.
104877
.
40.
Melaku
,
A. F.
, and
Bitsuamlak
,
G. T.
,
2021
, “
A Divergence-Free Inflow Turbulence Generator Using Spectral Representation Method for Large-Eddy Simulation of ABL Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
212
(
1
), pp.
104580
.
41.
Lu
,
C. L.
,
Li
,
Q. S.
,
Huang
,
S. H.
,
Chen
,
F. B.
, and
Fu
,
X. Y.
,
2012
, “
Large Eddy Simulation of Wind Effects on a Long-Span Complex Roof Structure
,”
J. Wind Eng. Ind. Aerodyn.
,
100
(
1
), pp.
1
18
.
42.
Guichard
,
R.
,
2019
, “
Assessment of an Improved Random Flow Generation Method to Predict Unsteady Wind Pressures on an Isolated Building Using Large-Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
189
(
1
), pp.
304
313
.
43.
Chen
,
W.
, and
Zhu
,
Z.
,
2020
, “
Numerical Simulation of Wind Turbulence by DSRFG and Identification of the Aerodynamic Admittance of Bridge Decks
,”
J. Wind Eng. Ind. Aerodyn.
,
14
(
1
), pp.
1515
1535
.
44.
Huang
,
S.
,
Li
,
R.
, and
Li
,
Q. S.
,
2013
, “
Numerical Simulation on Fluid-Structure Interaction of Wind Around Super-Tall Building at High Reynolds Number Conditions
,”
Struct. Eng. Mech.
,
46
(
2
), pp.
197
212
.
45.
Li
,
Y. C.
,
Cheng
,
C. M.
,
Lo
,
Y. L.
,
Fang
,
F. M.
, and
Zheng
,
D.
,
2015
, “
Simulation of Turbulent Flows Around a Prism in Suburban Terrain Inflow Based on Random Flow Generation Method Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
146
(
1
), pp.
51
58
.
46.
Aboshosha
,
H.
,
Elshaer
,
A.
,
Bitsuamlak
,
G. T.
, and
El Damatty
,
A.
,
2015
, “
Consistent Inflow Turbulence Generator for LES Evaluation of Wind-Induced Responses for Tall Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
142
(
1
), pp.
198
216
.
47.
Castro
,
H. G.
,
Paz
,
R. R.
,
Sonzogni
,
V. E.
,
Möller
,
O.
,
Signorelli
,
J. W.
,
Storti
,
M. A.
, and
Rosario
,
A.
,
2011
, “
Generation of Turbulent Inlet Velocity Conditions for Large Eddy Simulations
,”
Comput. Mech.
,
30
(
29
), pp.
2275
2288
.
48.
Vasaturo
,
R.
,
Kalkman
,
I.
,
Blocken
,
B.
, and
van Wesemael
,
P. J. V.
,
2018
, “
Large Eddy Simulation of the Neutral Atmospheric Boundary Layer: Performance Evaluation of Three Inflow Methods for Terrains with Different Roughness
,”
J. Wind Eng. Ind. Aerodyn.
,
173
(
1
), pp.
241
261
.
49.
Ricci
,
M.
,
Patruno
,
L.
,
Kalkman
,
I.
,
de Miranda
,
S.
, and
Blocken
,
B.
,
2018
, “
Towards LES as a Design Tool: Wind Loads Assessment on a High-Rise Building
,”
J. Wind Eng. Ind. Aerodyn.
,
180
(
1
), pp.
1
18
.
50.
Zhu
,
Z.
, and
Deng
,
Y.
,
2018
, “
Investigation Into Effects of Turbulence Integral Length on Wind Loads Acting on Tall Buildings Using Large Eddy Simulation
,”
J. Southwest Jiaotong Univ.
,
53
(
8
), pp.
508
516
.
51.
Marais
,
M. D.
,
Craig
,
K. J.
, and
Meyer
,
J. P
.,
2015
, “
Computational Flow Optimization of Heliostat Aspect Ratio for Wind Direction and Elevation Angle
,”
Energy Procedia
,
69
(
1
), pp.
148
157
.
52.
Poulain
,
P. E.
,
Craig
,
K. J.
, and
Meyer
,
J. P
.,
2016
, “
Influence of the Gap Size on the Wind Loading on Heliostats
,”
AIP Conf. Proc.
,
1734
(
1
), p.
020019
.
53.
Mammar
,
M.
,
Djouimaa
,
S.
,
Gärtner
,
U.
, and
Hamidat
,
A.
,
2018
, “
Wind Loads on Heliostats of Various Column Heights: An Experimental Study
,”
Energy
,
143
(
1
), pp.
867
880
.
54.
Fadlallah
,
S. O.
,
Anderson
,
T. N.
, and
Nates
,
R. J.
,
2021
, “
Flow Behavior and Aerodynamic Loading on a Stand-Alone Heliostat: Wind Incidence Effect
,”
Arabian J. Sci. Eng.
,
46
(
8
), pp.
7303
7321
.
55.
Durán
,
R. L.
,
Hinojosa
,
J. F.
, and
Sosa-Flores
,
P.
,
2022
, “
A Novel Approach for Computational Fluid Dynamics Analysis of Mean Wind Loads on Heliostats
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), pp.
061008
.
56.
Boddupalli
,
N.
,
Goenka
,
V.
, and
Chandra
,
L
.,
2017
,
“Fluid Flow Analysis Behind Heliostat Using Les and RANS: A Step Towards Optimized Field Design in Desert Regions
,”
AIP Conf. Proc.
,
1850
(
1
), p.
110001
.
57.
Wolmarans
,
J. R.
, and
Craig
,
K. J
.,
2019
, “
Two-Way Fluid-Structure Interaction of Medium-Sized Heliostats
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030064
.
58.
Wolmarans
,
J. R.
, and
Craig
,
K. J.
,
2019
, “
One-Way Fluid-Structure Interaction of a Medium-Sized Heliostat Using Scale-Resolving CFD Simulation
,”
Sol. Energy
,
191
(
1
), pp.
84
99
.
59.
Poulain
,
P.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2021
, “
Transient Simulation of an Atmospheric Boundary Layer Flow Past a Heliostat Using the Scale-Adaptive Simulation Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
218
(
1
), pp.
104740
.
60.
Zhiyin
,
Y.
,
2015
, “
Large-Eddy Simulation: Past, Present and the Future
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
11
24
.
61.
ANSYS
,
2013
,
ANSYS Fluent Users Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
62.
Strasser
,
W.
,
Kacinski
,
R.
,
Wilson
,
D.
,
Petrov
,
V.
, and
Manera
,
A.
,
2023
, “
It's About Time: Jet Interactions in an Asymmetrical Plenum
,”
Nucl. Technol.
,
0
(
0
), pp.
1
27
.
63.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
64.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
65.
Anderson
,
J. D.
,
1989
,
Introduction to Flight
,
McGraw-Hill
,
New York
.
66.
Abu-Zidan
,
Y.
,
Mendis
,
P.
, and
Gunawardena
,
T.
,
2021
, “
Optimizing the Computational Domain Size in CFD Simulations of Tall Buildings
,”
Heliyon
,
7
(
4
), p.
e06723
.
67.
Franke
,
J.
,
Hellsten
,
A.
,
Schlunzen
,
H.
, and
Carissimo
,
B.
,
2007
,
Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment
,
Brussels
,
Belgium
.
68.
Wang
,
Y.
, and
Chen
,
X.
,
2020
, “
Simulation of Approaching Boundary Layer Flow and Wind Loads on High-Rise Buildings by Wall-Modeled LES
,”
J. Wind Eng. Ind. Aerodyn.
,
207
(
1
), pp.
104410
.
69.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.
70.
Raymer
,
D. P.
,
1989
,
Aircraft Design: A Conceptual Approach
,
American Institute of Aeronautics and Astronautics
,
Washington, D.C.
71.
Zhan
,
J. M.
,
Li
,
Y. T.
,
Wai
,
W. H. O.
, and
Hu
,
W. Q.
,
2019
, “
Comparison Between the Q Criterion and Rortex in the Application of an In-Stream Structure
,”
Phys. Fluids
,
31
(
12
), pp.
121701
.
You do not currently have access to this content.