Abstract

To improve the thermal and hydraulic performance of artificially roughened solar air heaters (SAHs), the current study analyzes the thermal-hydraulic performance or thermal enhancement factor of artificially roughened solar air heaters. In present experimental research on a solar air heater's absorber plate, newly designed spiral-shaped semi-conical ribs have been explored. The spiral-shaped semi-conical ribs have been designed with the aim of reducing the pressure drop across the rib so that thermal performance may be improved with a little increase in pressure drop after integrating the ribs into the SAH mainstream flow. The higher value of thermal-hydraulic performance indicates an increased heat transfer rate with a minimum increase in pumping power. In order to achieve the highest possible thermal enhancement factor, this experimental study intends to analyze the effects of different geometrical parameters on the heat transmission and friction behavior of numerous spiral-shaped semi-conical ribs. Multiple experiments were conducted using different levels of roughness heights to optimize the rib profile parameters. The Reynolds number (Re) ranges from 3358.65 to 18,095.59, the relative roughness height (e/Dh) 0.09 to 0.227, and relative roughness pitch (P/e) 3.7 to 5.5. These multiple spiral-shaped semi-conical ribs give the maximum thermal enhancement factor of 2.85 at (e/Dh) 0.182 and P/e of 4.1 at Reynolds number 18,095.59. It has been found that current rib geometry can increase the thermal performance of solar air heaters with minimum increased pumping power with reference to rib explored by earlier researchers.

References

1.
International Energy Agency
,
2022
,
Global Energy Review: CO2 Emissions in 2021
,
IEA Publications
,
Paris, France
.
2.
National Oceanic and Atmospheric Administration
,
2023
,
Broken Record: Atmospheric Carbon Dioxide Levels Jump Again
,
National Oceanic and Atmospheric Administration, U.S. Department of Commerce
,
Washington, DC
.
3.
The Intergovernmental Panel on Climate Change (IPCC)
,
2022
,
Climate Change 2021: Summary for All
,
The Intergovernmental Panel on Climate Change (IPCC)
,
Geneva, Switzerland
.
4.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Performance Improvement of Double-Pass Solar Air Heater—A State of Art of Review
,”
Renew. Sustainable Energy Rev.
,
79
, pp.
779
793
.
5.
Energy.gov
,
2016
,
Top 6 Things You Didn’t Know About Solar Energy
,
Energy.gov
,
Washington, DC
.
6.
Verma
,
S. K.
, and
Prasad
,
B. N.
,
2000
, “
Investigation for the Optimal Thermohydraulic Performance of Artificially Roughened Solar air Heaters
,”
Renew. Energy
,
20
(
1
), pp.
19
36
.
7.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Sol. Energy
,
41
(
6
), pp.
555
560
.
8.
Singh
,
S.
,
Dhruw
,
L.
, and
Chander
,
S.
,
2019
, “
Experimental Investigation of a Double Pass Converging Finned Wire Mesh Packed Bed Solar Air Heater
,”
J. Energy Storage
,
21
, pp.
713
723
.
9.
Ebrahim Momin
,
A.-M.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3383
3396
.
10.
Hans
,
V. S.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Multiple V-Ribs
,”
Sol. Energy
,
84
(
6
), pp.
898
911
.
11.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2011
, “
Heat Transfer and Friction Factor Correlations of Solar Air Heater Ducts Artificially Roughened With Discrete V-Down Ribs
,”
Energy
,
36
(
8
), pp.
5053
5064
.
12.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2012
, “
Investigations on Thermo-Hydraulic Performance Due to Flow-Attack-Angle in V-Down Rib With Gap in a Rectangular Duct of Solar air Heater
,”
Appl. Energy
,
97
, pp.
907
912
.
13.
Kumar
,
A.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2013
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Multi V-Shaped With Gap Rib as Artificial Roughness
,”
Renew. Energy
,
58
, pp.
151
163
.
14.
Alam
,
T.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2014
, “
Experimental Investigation on Heat Transfer Enhancement Due to V-Shaped Perforated Blocks in a Rectangular Duct of Solar Air Heater
,”
Energy Convers. Manage.
,
81
, pp.
374
383
.
15.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.
16.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2015
, “
Thermo-Hydraulic Performance Due to Relative Roughness Pitch in V-Down Rib With Gap in Solar Air Heater Duct—Comparison With Similar Rib Roughness Geometries
,”
Renew. Sustainable Energy Rev.
,
43
, pp.
1159
1166
.
17.
Maithani
,
R.
, and
Saini
,
J. S.
,
2016
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With V-Ribs With Symmetrical Gaps
,”
Exp. Therm. Fluid. Sci.
,
70
, pp.
220
227
.
18.
Jain
,
P. K.
, and
Lanjewar
,
A.
,
2019
, “
Overview of V-RIB Geometries in Solar Air Heater and Performance Evaluation of a New V-RIB Geometry
,”
Renew. Energy
,
133
, pp.
77
90
.
19.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2018
, “
Experimental Analysis for Augmentation of Heat Transfer in Multiple Discrete V-Patterns Combined With Staggered Ribs Solar Air Heater
,”
Renew. Energy Focus
,
25
, pp.
31
39
.
20.
Jin
,
D.
,
Quan
,
S.
,
Zuo
,
J.
, and
Xu
,
S.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in a Solar air Heater Roughened by Multiple V-Shaped Ribs
,”
Renew. Energy
,
134
, pp.
78
88
.
21.
Singh Patel
,
S.
, and
Lanjewar
,
A.
,
2019
, “
Experimental and Numerical Investigation of Solar Air Heater With Novel V-Rib Geometry
,”
J. Energy Storage
,
21
, pp.
750
764
.
22.
Promvonge
,
P.
,
Tongyote
,
P.
, and
Skullong
,
S.
,
2019
, “
Thermal Behaviors in Heat Exchanger Channel With V-Shaped Ribs and Grooves
,”
Chem. Eng. Res. Des.
,
150
, pp.
263
273
.
23.
Promvonge
,
P.
,
Promthaisong
,
P.
, and
Skullong
,
S.
,
2022
, “
Heat Transfer Augmentation in Solar Heat Exchanger Duct With Louver-Punched V-Baffles
,”
Sol. Energy
,
248
, pp.
103
120
.
24.
Singh
,
V. P.
,
Jain
,
S.
, and
Gupta
,
J. M. L.
,
2022
, “
Analysis of the Effect of Variation in Open Area Ratio in Perforated Multi-V rib Roughened Single Pass Solar Air Heater—Part A
,”
Energy Sources, Part A: Recov., Utiliz. Environ. Eff.
,
44
, pp.
1
21
.
25.
Priyam
,
A.
, and
Chand
,
P.
,
2016
, “
Thermal and Thermohydraulic Performance of Wavy Finned Absorber Solar Air Heater
,”
Sol. Energy
,
130
, pp.
250
259
.
26.
Sawhney
,
J. S.
,
Maithani
,
R.
, and
Chamoli
,
S.
,
2017
, “
Experimental Investigation of Heat Transfer and Friction Factor Characteristics of Solar Air Heater Using Wavy Delta Winglets
,”
Appl. Therm. Eng.
,
117
, pp.
740
751
.
27.
Priyam
,
A.
, and
Chand
,
P.
,
2018
, “
Effect of Wavelength and Amplitude on the Performance of Wavy Finned Absorber Solar Air Heater
,”
Renew. Energy
,
119
, pp.
690
702
.
28.
Priyam
,
A.
, and
Chand
,
P.
,
2018
, “
Thermal Performance of Wavy Finned Absorber Solar Air Heater
,”
Int. J. Heat Technol.
,
36
(
4
), pp.
1393
1403
.
29.
Singh
,
S.
,
2020
, “
Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed Bed Solar Air Heater
,”
Renew. Energy
,
145
, pp.
1361
1387
.
30.
Haldar
,
A.
,
Varshney
,
L.
, and
Verma
,
P.
,
2022
, “
Effect of Roughness Parameters on Performance of Solar Air Heater Having Artificial Wavy Roughness Using CFD
,”
Renew. Energy
,
184
, pp.
266
279
.
31.
Alam
,
T.
, and
Kim
,
M. H.
,
2016
, “
Numerical Study on Thermal Hydraulic Performance Improvement in Solar Air Heater Duct With Semi Ellipse Shaped Obstacles
,”
Energy
,
112
, pp.
588
598
.
32.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Performance Evaluation of Solar Air Heater With Novel Hyperbolic Rib Geometry
,”
Renew. Energy
,
105
, pp.
786
797
.
33.
Thakur
,
D. S.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2017
, “
Solar Air Heater With Hyperbolic Ribs: 3D Simulation With Experimental Validation
,”
Renew. Energy
,
113
, pp.
357
368
.
34.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renew. Energy
,
34
(
5
), pp.
1285
1291
.
35.
Kumar
,
R.
,
Goel
,
V.
,
Singh
,
P.
,
Saxena
,
A.
,
Kashyap
,
A. S.
, and
Rai
,
A.
,
2019
, “
Performance Evaluation and Optimization of Solar Assisted Air Heater With Discrete Multiple Arc Shaped Ribs
,”
J. Energy Storage
,
26
, p.
100978
.
36.
Saravanakumar
,
P. T.
,
Somasundaram
,
D.
, and
Matheswaran
,
M. M.
,
2019
, “
Thermal and Thermo-Hydraulic Analysis of Arc Shaped Rib Roughened Solar Air Heater Integrated With Fins and Baffles
,”
Sol. Energy
,
180
, pp.
360
371
.
37.
Sureandhar
,
G.
,
Srinivasan
,
G.
,
Muthukumar
,
P.
, and
Senthilmurugan
,
S.
,
2022
, “
Investigation of Thermal Performance in a Solar Air Heater Having Variable Arc Ribbed Fin Configuration
,”
Sust. Energy Technol. Assess.
,
52
, p.
102069
.
38.
Kalpana
,
Varshney
,
L.
, and
Subudhi
,
S.
,
2022
, “
Heat Transfer and Pressure Drop in a Double-Pass Solar Air Heater With Arc-Shaped Artificial Roughness
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061002
.
39.
Agrawal
,
Y.
,
Bhagoria
,
J. L.
,
Gautam
,
A.
,
Chaurasiya
,
P. K.
,
Dhanraj
,
J. A.
,
Solomon
,
J. M.
, and
Salyan
,
S.
,
2022
, “
Experimental Evaluation of Hydrothermal Performance of Solar Air Heater With Discrete Roughened Plate
,”
Appl. Therm. Eng.
,
211
, p.
118379
.
40.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.
41.
Sethi
,
M.
,
Varun
, and
Thakur
,
N. S.
,
2012
, “
Correlations for Solar Air Heater Duct With Dimpled Shape Roughness Elements on Absorber Plate
,”
Sol. Energy
,
86
(
9
), pp.
2852
2861
.
42.
Kumar
,
V.
,
2019
, “
Nusselt Number and Friction Factor Correlations of Three Sides Concave Dimple Roughened Solar Air Heater
,”
Renew. Energy
,
135
, pp.
355
377
.
43.
Perwez
,
A.
, and
Kumar
,
R.
,
2019
, “
Thermal Performance Investigation of the Flat and Spherical Dimple Absorber Plate Solar Air Heaters
,”
Sol. Energy
,
193
, pp.
309
323
.
44.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Experimental Study of Augmented Heat Transfer and Friction in Solar Air Heater With Different Orientations of W-Rib Roughness
,”
Exp. Therm. Fluid. Sci.
,
35
(
6
), pp.
986
995
.
45.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With W-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
.
46.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renew. Energy
,
25
(
3
), pp.
341
369
.
47.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renew. Energy
,
31
(
3
), pp.
317
331
.
48.
Karwa
,
R.
, and
Maheshwari
,
B. K.
,
2009
, “
Heat Transfer and Friction in an Asymmetrically Heated Rectangular Duct With Half and Fully Perforated Baffles at Different Pitches
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
264
268
.
49.
Alam
,
T.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2014
, “
Use of Turbulators for Heat Transfer Augmentation in an Air Duct—A Review
,”
Renew. Energy
,
62
, pp.
689
715
.
50.
Sharma
,
N. Y.
,
Madhwesh
,
N.
, and
Karanth
,
K. V.
,
2019
, “
The Effect of Flow Obstacles of Different Shapes for Generating Turbulent Flow for Improved Performance of the Solar Air Heater
,,”
Proc. Manuf.
,
35
, pp.
1096
1101
.
51.
Singh
,
A. P.
, and
Singh
,
O. P.
,
2020
, “
Curved vs. Flat Solar Air Heater: Performance Evaluation Under Diverse Environmental Conditions
,”
Renew. Energy
,
145
, pp.
2056
2073
.
52.
Yadav
,
A. S.
,
Shukla
,
O. P.
,
Sharma
,
A.
, and
Khan
,
I. A.
,
2022
, “
CFD Analysis of Heat Transfer Performance of Ribbed Solar Air Heater
,”
Mater. Today: Proc.
,
62
, pp.
1413
1419
.
53.
ASHRAE
,
1977
, “
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,”
ASHRAE, New York, Standard No. 93-1977
.
54.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
55.
Gabhane
,
M. G.
, and
Kanase-Patil
,
A. B.
,
2017
, “
Experimental Analysis of Double Flow Solar Air Heater With Multiple C Shape Roughness
,”
Sol. Energy
,
155
, pp.
1411
1416
.
You do not currently have access to this content.