Abstract

The expected annual energy output of vertical bifacial solar panel arrays was modeled with an eye on how array design attributes affect the output. We considered module height, cell density (single- or double-high racking), inter-row spacing, and inverter connection (rows of modules wired together or separately), and the inclusion of bypass diodes. We observed that these design choices have a substantial impact on the annual energy yield on a per-module basis and per-acre basis. We modeled the instantaneous brightness and shading based on the position of the sun and adjacent rows of modules, which caused nonuniform irradiance due to inter-row shading effects. Based on the irradiance, we calculated current, voltage, and power values throughout a year for different design strategies. Double-high racking, which uses two landscape-oriented modules stacked vertically, offers noteworthy power gains per acre with only a modest increase of inter-row shading. When bypass diodes are included in the module design and improved inverter wiring is used, much of the loss due to inter-row shading is mitigated, and the total power output per acre is nearly doubled, with modules seeing an 80% power increase per acre for 20 ft row spacing, and over 90% power increase per acre for 40 ft spacing.

References

1.
Riaz
,
M. H.
,
Imran
,
H.
,
Younas
,
R.
,
Alam
,
M. A.
, and
Butt
,
N. Z.
,
2021
, “
Module Technology for Agrivoltaics: Vertical Bifacial Versus Tilted Monofacial Farms
,”
IEEE J. Photovolt.
,
11
(
2
), pp.
469
477
.
2.
Vijayan
,
R. A.
,
Sivanarul
,
J.
, and
Varadharajaperumal
,
M.
,
2021
, “
Optimizing the Spectral Sharing in a Vertical Bifacial Agrivoltaics Farm
,”
J. Phys. D: Appl. Phys.
,
54
(
30
), p.
304004
.
3.
Miskin
,
C. K.
,
Li
,
Y.
,
Perna
,
A.
,
Ellis
,
R. G.
,
Grubbs
,
E. K.
,
Bermel
,
P.
, and
Agrawal
,
R.
,
2019
, “
Sustainable Co-production of Food and Solar Power to Relax Land-Use Constraints
,”
Nat. Sustainability
,
2
(
10
), pp.
972
980
.
4.
Goetzberger
,
A.
, and
Zastrow
,
A.
,
1982
, “
On the Coexistence of Solar-Energy Conversion and Plant Cultivation
,”
Int. J. Sol. Energy
,
1
(
1
), pp.
55
69
.
5.
Dupraz
,
C.
,
Marrou
,
H.
,
Talbot
,
G.
,
Dufour
,
L.
,
Nogier
,
A.
, and
Ferard
,
Y.
,
2011
, “
Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes
,”
Renewable Energy
,
36
(
10
), pp.
2725
2732
.
6.
Agostini
,
A.
,
Colauzzi
,
M.
, and
Amaducci
,
S.
,
2021
, “
Innovative Agrivoltaic Systems to Produce Sustainable Energy: An Economic and Environmental Assessment
,”
Appl. Energy
,
281
, p.
116102
.
7.
Amaducci
,
S.
,
Yin
,
X.
, and
Colauzzi
,
M.
,
2018
, “
Agrivoltaic Systems to Optimise Land Use for Electric Energy Production
,”
Appl. Energy
,
220
, pp.
545
561
.
8.
Schindele
,
S.
,
Trommsdorff
,
M.
,
Schlaak
,
A.
,
Obergfell
,
T.
,
Bopp
,
G.
,
Reise
,
C.
,
Braun
,
C.
, et al
,
2020
, “
Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications
,”
Appl. Energy
,
265
, p.
114737
.
9.
Dinesh
,
H.
, and
Pearce
,
J. M.
,
2016
, “
The Potential of Agrivoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
299
308
.
10.
Cho
,
J.
,
Park
,
S. M.
,
Reum Park
,
A.
,
Lee
,
O. C.
,
Nam
,
G.
, and
Ra
,
I. H.
,
2020
, “
Application of Photovoltaic Systems for Agriculture: A Study on the Relationship Between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture
,”
Energies
,
13
(
18
), pp.
1
18
.
11.
Kopecek
,
R.
, and
Libal
,
J.
,
2021
, “
Bifacial Photovoltaics 2021: Status, Opportunities and Challenges
,”
Energies
,
14
(
8
), p.
2076
.
12.
Kreutzmann
,
A.
,
2017
,
Eine Insel Mit Zwei Bergen
,
Photon International Magazine
.
13.
Chavali
,
R. V. K.
,
Wolf
,
S. D.
, and
Alam
,
M. A.
,
2018
, “
Device Physics Underlying Silicon Heterojunction and Passivating-Contact Solar Cells: A Topical Review
,”
Prog. Photovolt.: Res. Appl.
,
26
(
4
), pp.
241
260
.
14.
Gerritsen
,
E.
,
Janssen
,
G.
, and
Deline
,
C.
,
2018
, “
A ‘Global’ View on Bifacial Gain: Dependence on Geographic Location and Environmental Conditions
,”
Bifacial Photovoltaics: Technology, Applications and Economics
,
Institution of Engineering and Technology
, pp.
267
292
.
15.
Patel
,
M. T.
,
Vijayan
,
R. A.
,
Asadpour
,
R.
,
Varadharajaperumal
,
M.
,
Khan
,
M. R.
, and
Alam
,
M. A.
,
2020
, “
Temperature-Dependent Energy Gain of Bifacial PV Farms: A Global Perspective
,”
Appl. Energy
,
276
, p.
115405
.
16.
Hansen
,
C. W.
,
Gooding
,
R.
,
Guay
,
N.
,
Riley
,
D. M.
,
Kallickal
,
J.
,
Ellibee
,
D.
,
Asgharzadeh
,
A.
,
Marion
,
B.
,
Toor
,
F.
, and
Stein
,
J. S.
,
2017
, “
A Detailed Model of Rear-Side Irradiance for Bifacial PV Modules
,”
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
Washington, DC
,
June 25–30
, IEEE, pp.
1543
1548
.
17.
Sun
,
X.
,
Khan
,
M. R.
,
Hanna
,
A.
,
Hussain
,
M. M.
, and
Alam
,
M. A.
,
2017
, “
The Potential of Bifacial Photovoltaics: A Global Perspective
,”
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
,
Washington, DC
,
June 25–30
, IEEE, pp.
1055
1057
.
18.
Khan
,
M. R.
,
Sakr
,
E.
,
Sun
,
X.
,
Bermel
,
P.
, and
Alam
,
M. A.
,
2019
, “
Ground Sculpting to Enhance Energy Yield of Vertical Bifacial Solar Farms
,”
Appl. Energy
,
241
, pp.
592
598
.
19.
Khan
,
M. R.
,
Hanna
,
A.
,
Sun
,
X.
, and
Alam
,
M. A.
,
2017
, “
Vertical Bifacial Solar Farms: Physics, Design, and Global Optimization
,”
Appl. Energy
,
206
, pp.
240
248
.
20.
Riaz
,
M. H.
,
Imran
,
H.
, and
Butt
,
N. Z.
,
2020
, “
Optimization of PV Array Density for Fixed Tilt Bifacial Solar Panels for Efficient Agrivoltaic Systems
,”
2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
,
Calgary, ON, Canada
,
June 15–Aug. 21
, IEEE,pp. 1349–1352.
21.
Khan
,
M. R.
,
Patel
,
M. T.
,
Asadpour
,
R.
,
Imran
,
H.
,
Butt
,
N. Z.
, and
Alam
,
M. A.
,
2021
, “
A Review of Next Generation Bifacial Solar Farms: Predictive Modeling of Energy Yield, Economics, and Reliability
,”
J. Phys. D: Appl. Phys.
,
54
(
32
), p.
323001
.
22.
Bhaduri
,
S.
, and
Kottantharayil
,
A.
,
2019
, “
Mitigation of Soiling by Vertical Mounting of Bifacial Modules
,”
IEEE J. Photovolt.
,
9
(
1
), pp.
240
244
.
23.
Souza
,
J. J. S.
,
Carvalho
,
P. C. M.
, and
Barroso
,
G. C.
,
2023
, “
Analysis of the Characteristics and Effects of Soiling Natural Accumulation on 2 Photovoltaic Systems: A Systematic Review of the Literature
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
040801
.
24.
Molin
,
E.
,
Stridh
,
B.
,
Molin
,
A.
, and
Wackelgard
,
E.
,
2018
, “
Experimental Yield Study of Bifacial PV Modules in Nordic Conditions
,”
IEEE J. Photovolt.
,
8
(
6
), pp.
1457
1463
.
25.
Riaz
,
M. H.
,
Imran
,
H.
,
Younas
,
R.
, and
Butt
,
N. Z.
,
2021
, “
The Optimization of Vertical Bifacial Photovoltaic Farms for Efficient Agrivoltaic Systems
,”
Sol. Energy
,
230
, pp.
1004
1012
.
26.
Rossum
,
G. V.
, and
Drake
,
F. L.
,
2009
,
Python 3 Reference Manual
,
CreateSpace
,
Scotts Valley, CA
.
27.
William
,
H. F.
,
Clifford
,
W. H.
, and
Mark
,
A. M.
,
2018
, “
Pvlib Python: A Python Package for Modeling Solar Energy Systems
,”
J. Open Source Software
,
3
(
29
), p.
884
.
28.
Sengupta
,
M.
,
Xie
,
Y.
,
Lopez
,
A.
,
Habte
,
A.
,
Maclaurin
,
G.
, and
Shelby
,
J.
,
2018
, “
The National Solar Radiation Data Base (NSRDB)
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
51
60
.
29.
Muthu
,
V.
, and
Ramadas
,
G.
,
2023
, “
A Comprehensive 4E Study on the Performance of Bifacial Solar Module Installed on Different Ground Surface Colors: An Experimental Study on a Specific Site
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011012
.
30.
Liang
,
T. S.
,
Pravettoni
,
M.
,
Deline
,
C.
,
Stein
,
J. S.
,
Kopecek
,
R.
,
Singh
,
J. P.
,
Luo
,
W.
,
Wang
,
Y.
,
Aberle
,
A. G.
, and
Khoo
,
Y. S.
,
2019
, “
A Review of Crystalline Silicon Bifacial Photovoltaic Performance Characterisation and Simulation
,”
Energy Environ. Sci.
,
12
(
1
), pp.
116
148
.
31.
Gu
,
W.
,
Ma
,
T.
,
Ahmed
,
S.
,
Zhang
,
Y.
, and
Peng
,
J.
,
2020
, “
A Comprehensive Review and Outlook of Bifacial Photovoltaic (BPV) Technology
,”
Energy Convers. Manage.
,
223
, p.
113283
.
32.
Riaz
,
M. H.
,
Imran
,
H.
,
Younas
,
R.
,
Alam
,
M. A.
, and
Butt
,
N. Z.
,
2021
, “
Module Technology for Agrivoltaics: Vertical Bifacial Versus Tilted Monofacial Farms
,”
IEEE J. Photovolt.
,
11
(
2
), pp.
469
477
.
33.
Loutzenhiser
,
P. G.
,
Manz
,
H.
,
Felsmann
,
C.
,
Strachan
,
P. A.
,
Frank
,
T.
, and
Maxwell
,
G. M.
,
2007
, “
Empirical Validation of Models to Compute Solar Irradiance on Inclined Surfaces for Building Energy Simulation
,”
Sol. Energy
,
81
(
2
), pp.
254
267
.
34.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
New York
.
35.
Howell
,
J. R.
,
1982
,
A Catalog of Radiation Configuration Factors
,
McGraw-Hill College
.
36.
Russell
,
T. C. R.
,
Saive
,
R.
,
Augusto
,
A.
,
Bowden
,
S. G.
, and
Atwater
,
H. A.
,
2017
, “
The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study
,”
IEEE J. Photovolt.
,
7
(
6
), pp.
1611
1618
.
37.
Qian
,
J.
,
Thomson
,
A. F.
,
Wu
,
Y.
,
Weber
,
K. J.
, and
Blakers
,
A. W.
,
2018
, “
Impact of Perovskite/Silicon Tandem Module Design on Hot-Spot Temperature
,”
ACS Appl. Energy Mater.
,
1
(
7
), pp.
3025
3029
.
38.
Luxor Solar GmbH
,
2022
,
Eco Line Glas-Glas Half Cell Bifacial M144/420-440 W
,
Luxor Solar GmbH
,
Stuttgart, Germany
.
39.
Tigo Energy Inc.
,
2022
,
TS4-A-O (Optimization)—700W (15A)
,
Tigo Energy Inc.
,
Campbell, CA
.
40.
Marrou
,
H.
,
Wery
,
J.
,
Dufour
,
L.
, and
Dupraz
,
C.
,
2013
, “
Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels
,”
Eur. J. Agron.
,
44
, pp.
54
66
.
41.
Next2Sun GmbH
,
2018
,
Tractor During Mowing Work in the Solar Park
,
Next2Sun GmbH
,
Dillingen, Saarland, Germany
.
42.
Texas Instruments
,
2012
,
SM74611 Smart Bypass Diode
,
Texas Instruments
,
Dallas, TX
.
You do not currently have access to this content.