Abstract

In this article, a V-shaped ribbed tube is utilized to improve the thermal performance of a parabolic trough collector (PTC). Six different rib arrangements are employed, and a detailed analysis is presented. In addition, the effect of adopting a secondary reflector (SR) on the temperature distribution around both a smooth and a ribbed parabolic trough receiver (PTR) tube is conducted. A computational fluid dynamics model is employed to study the heat transfer and fluid flow characteristics inside the tube. Results show that V-shaped ribs are an effective tool to stir up the flow and increase the velocity gradient of the fluid near the inner surface of the tube. This helps increase the convective heat transfer rate and reduce the tube’s maximum circumferential temperature. Moreover, results from the study show that the secondary reflector contributes to a further decrease in the tube surface temperature and hence improves the overall thermal efficiency of the collector. The combination of a V-shaped ribbed PTR tube and a secondary reflector is thus shown to be beneficial for the PTC system, especially at high Reynolds numbers.

References

1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy. Combust. Sci.
,
30
(
3
), pp.
231
295
.
2.
Reddy
,
K.
, and
Veershetty
,
G.
,
2013
, “
Viability Analysis of Solar Parabolic Dish Stand-Alone Power Plant for Indian Conditions
,”
Appl. Energy.
,
102
, pp.
908
922
.
3.
Heimsath
,
A.
,
Cuevas
,
F.
,
Hofer
,
A.
,
Nitz
,
P.
, and
Platzer
,
W.
,
2014
, “
Linear Fresnel Collector Receiver: Heat Loss and Temperatures
,”
Energy Procedia
,
49
, pp.
386
397
.
4.
Pitz-Paal
,
R.
,
Botero
,
N. B.
, and
Steinfeld
,
A.
,
2011
, “
Heliostat Field Layout Optimization for High-Temperature Solar Thermochemical Processing
,”
Sol. Energy.
,
85
(
2
), pp.
334
343
.
5.
Patnode
,
A. M.
,
2006
, “
Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants
”. Ph.D. thesis,
University of Wisconsin-Madison
,
Madison, WI
, http://digital.library.wisc.edu/1793/7590
6.
Eck
,
M.
, and
Hirsch
,
T.
,
2007
, “
Dynamics and Control of Parabolic Trough Collector Loops With Direct Steam Generation
,”
Sol. Energy.
,
81
(
2
), pp.
268
279
.
7.
Kalogirou
,
S.
,
1998
, “
Use of Parabolic Trough Solar Energy Collectors for Sea-Water Desalination
,”
Appl. Energy.
,
60
(
2
), pp.
65
88
.
8.
Cabrera
,
F.
,
Fernández-García
,
A.
,
Silva
,
R.
, and
Pérez-García
,
M.
,
2013
, “
Use of Parabolic Trough Solar Collectors for Solar Refrigeration and Air-Conditioning Applications
,”
Renewable. Sustainable. Energy. Rev.
,
20
, pp.
103
118
.
9.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of the Thermal Enhancement Methods in Parabolic Trough Collectors
,”
Int. J. Energy Environ. Eng.
,
9
(
1
), pp.
59
70
.
10.
Reddy
,
K.
,
Kumar
,
K. R.
, and
Ajay
,
C.
,
2015
, “
Experimental Investigation of Porous Disc Enhanced Receiver for Solar Parabolic Trough Collector
,”
Renewable Energy
,
77
, pp.
308
319
.
11.
Jafar
,
K. S.
, and
Sivaraman
,
B.
,
2017
, “
Performance Characteristics of Parabolic Solar Collector Water Heater System Fitted With Nail Twisted Tapes Absorber
,”
J. Eng. Sci. Technol.
,
12
(
3
), pp.
608
621
.
12.
Jamal-Abad
,
M. T.
,
Saedodin
,
S.
, and
Aminy
,
M.
,
2017
, “
Experimental Investigation on a Solar Parabolic Trough Collector for Absorber Tube Filled With Porous Media
,”
Renewable Energy
,
107
, pp.
156
163
.
13.
Wang
,
P.
,
Liu
,
D.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy.
,
102
, pp.
449
460
.
14.
Zhu
,
X.
,
Zhu
,
L.
, and
Zhao
,
J.
,
2017
, “
Wavy-Tape Insert Designed for Managing Highly Concentrated Solar Energy on Absorber Tube of Parabolic Trough Receiver
,”
Energy
,
141
, pp.
1146
1155
.
15.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver with Centrally Placed Perforated Plate Inserts
,”
Appl. Energy.
,
136
, pp.
989
1003
.
16.
Xiao
,
H.
,
Liu
,
P.
,
Liu
,
Z.
, and
Liu
,
W.
,
2021
, “
Performance Analyses in Parabolic Trough Collectors by Inserting Novel Inclined Curved-twisted Baffles
,”
Renewable Energy
,
165
, pp.
14
27
.
17.
Elton
,
D.
, and
Arunachala
,
U.
,
2018
, “
Parabolic Trough Solar Collector for Medium Temperature Applications: An Experimental Analysis of the Efficiency and Length Optimization by Using Inserts
,”
ASME J. Sol. Energy. Eng.
,
140
(
6
), p.
061012
.
18.
Sokhansefat
,
T.
,
Kasaeian
,
A.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/synthetic Oil Nanofluid
,”
Renewable. Sustainable. Energy. Rev.
,
33
, pp.
636
644
.
19.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Chen
,
Y.
, and
Liu
,
H.
,
2016
, “
Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/synthetic Oil Nanofluid
,”
Appl. Therm. Eng.
,
107
, pp.
469
478
.
20.
Khakrah
,
H.
,
Shamloo
,
A.
, and
Kazemzadeh Hannani
,
S.
,
2017
, “
Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study
,”
ASME J. Sol. Energy. Eng.
,
139
(
5
), p.
051006
.
21.
Freedman
,
J. P.
,
Wang
,
H.
, and
Prasher
,
R. S.
,
2018
, “
Analysis of Nanofluid-Based Parabolic Trough Collectors for Solar Thermal Applications
,”
ASME J. Sol. Energy. Eng.
,
140
(
5
), p.
051008
.
22.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.
23.
Kasaeian
,
A.
,
Daviran
,
S.
,
Azarian
,
R. D.
, and
Rashidi
,
A.
,
2015
, “
Performance Evaluation and Nanofluid Using Capability Study of a Solar Parabolic Trough Collector
,”
Energy. Convers. Manage.
,
89
, pp.
368
375
.
24.
Subramani
,
J.
,
Nagarajan
,
P.
,
Mahian
,
O.
, and
Sathyamurthy
,
R.
,
2018
, “
Efficiency and Heat Transfer Improvements in a Parabolic Trough Solar Collector Using TiO2 Nanofluids Under Turbulent Flow Regime
,”
Renewable Energy
,
119
, pp.
19
31
.
25.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Said
,
Z.
,
2020
, “
A Systematic Parametric Thermal Analysis of Nanofluid-Based Parabolic Trough Solar Collectors
,”
Sustainable Energy Technologies Assessments
,
39
, p.
100714
.
26.
Kaloudis
,
E.
,
Papanicolaou
,
E.
, and
Belessiotis
,
V.
,
2016
, “
Numerical Simulations of a Parabolic Trough Solar Collector With Nanofluid Using a Two-Phase Model
,”
Renewable Energy
,
97
, pp.
218
229
.
27.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol® VP-1 Nanofluid
,”
Energy. Convers. Manage.
,
120
, pp.
449
465
.
28.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renewable. Sustainable. Energy. Rev.
,
91
, pp.
358
375
.
29.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
30.
Kasaeian
,
A.
,
Eshghi
,
A. T.
, and
Sameti
,
M.
,
2015
, “
A Review on the Applications of Nanofluids in Solar Energy Systems
,”
Renewable. Sustainable. Energy. Rev.
,
43
, pp.
584
598
.
31.
Xiong
,
Q.
,
Hajjar
,
A.
,
Alshuraiaan
,
B.
,
Izadi
,
M.
,
Altnji
,
S.
, and
Shehzad
,
S. A.
,
2021
, “
State-of-the-Art Review of Nanofluids in Solar Collectors: A Review Based on the Type of the Dispersed Nanoparticles
,”
J. Cleaner. Prod.
,
310
, p.
127528
.
32.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
.
Wiley
,
New York
.
33.
Muñoz
,
J.
, and
Abánades
,
A.
,
2011
, “
Analysis of Internal Helically Finned Tubes for Parabolic Trough Design by CFD Tools
,”
Appl. Energy.
,
88
(
11
), pp.
4139
4149
.
34.
Cheng
,
Z.
,
He
,
Y.
, and
Cui
,
F.
,
2012
, “
Numerical Study of Heat Transfer Enhancement by Unilateral Longitudinal Vortex Generators Inside Parabolic Trough Solar Receivers
,”
Int. J. Heat. Mass. Transfer.
,
55
(
21–22
), pp.
5631
5641
.
35.
Fuqiang
,
W.
,
Zhexiang
,
T.
,
Xiangtao
,
G.
,
Jianyu
,
T.
,
Huaizhi
,
H.
, and
Bingxi
,
L.
,
2016
, “
Heat Transfer Performance Enhancement and Thermal Strain Restrain of Tube Receiver for Parabolic Trough Solar Collector by Using Asymmetric Outward Convex Corrugated Tube
,”
Energy
,
114
, pp.
275
292
.
36.
Fuqiang
,
W.
,
Qingzhi
,
L.
,
Huaizhi
,
H.
, and
Jianyu
,
T.
,
2016
, “
Parabolic Trough Receiver With Corrugated Tube for Improving Heat Transfer and Thermal Deformation Characteristics
,”
Appl. Energy.
,
164
, pp.
411
424
.
37.
Gong
,
X.
,
Wang
,
F.
,
Wang
,
H.
,
Tan
,
J.
,
Lai
,
Q.
, and
Han
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Pin Fin Arrays Inserting
,”
Sol. Energy.
,
144
, pp.
185
202
.
38.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy. Eng.
,
140
(
5
), p.
051009
.
39.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy.
,
157
, pp.
514
531
.
40.
Liu
,
P.
,
Lv
,
J.
,
Shan
,
F.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Effects of Rib Arrangements on the Performance of a Parabolic Trough Receiver With Ribbed Absorber Tube
,”
Appl. Therm. Eng.
,
156
, pp.
1
13
.
41.
Zou
,
B.
,
Jiang
,
Y.
,
Yao
,
Y.
, and
Yang
,
H.
,
2019
, “
Thermal Performance Improvement Using Unilateral Spiral Ribbed Absorber Tube for Parabolic Trough Solar Collector
,”
Sol. Energy.
,
183
, pp.
371
385
.
42.
Huang
,
Z.
,
Li
,
Z.-Y.
,
Yu
,
G.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Numerical Investigations on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Eng.
,
114
, pp.
1287
1299
.
43.
Bitam
,
E.
,
Demagh
,
Y.
,
Hachicha
,
A. A.
,
Benmoussa
,
H.
, and
Kabar
,
Y.
,
2018
, “
Numerical Investigation of a Novel Sinusoidal Tube Receiver for Parabolic Trough Technology
,”
Appl. Energy.
,
218
, pp.
494
510
.
44.
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2018
, “
Heat Transfer Enhancement in Parabolic Trough Collectors: A Comprehensive Review
,”
Renewable. Sustainable. Energy. Rev.
,
92
, pp.
198
218
.
45.
Mwesigye
,
A.
, and
Meyer
,
J. P.
,
2017
, “
Optimal Thermal and Thermodynamic Performance of a Solar Parabolic Trough Receiver With Different Nanofluids and at Different Concentration Ratios
,”
Appl. Energy.
,
193
, pp.
393
413
.
46.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Optimum Number of Internal Fins in Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
137
, pp.
669
677
.
47.
Spirkl
,
W.
,
Ries
,
H.
,
Muschaweck
,
J.
, and
Timinger
,
A.
,
1997
, “
Optimized Compact Secondary Reflectors for Parabolic Troughs With Tubular Absorbers
,”
Sol. Energy.
,
61
(
3
), pp.
153
158
.
48.
Bharti
,
A.
,
Mishra
,
A.
, and
Paul
,
B.
,
2019
, “
Thermal Performance Analysis of Small-Sized Solar Parabolic Trough Collector Using Secondary Reflectors
,”
Int. J. Sustainable Energy
,
38
(
10
), pp.
1002
1022
.
49.
Núnez Bootello
,
J. P.
,
Price
,
H.
,
Silva Pérez
,
M.
, and
Doblaré Castellano
,
M.
,
2016
, “
Optical Analysis of a Two Stage XX Concentrator for Parametric Trough Primary and Tubular Absorber With Application in Solar Thermal Energy Trough Power Plants
,”
ASME J. Sol. Energy. Eng.
,
138
(
4
), p.
041002
.
50.
Canavarro
,
D.
,
Chaves
,
J.
, and
Collares-Pereira
,
M.
,
2014
, “
New Optical Designs for Large Parabolic Troughs
,”
Energy Procedia
,
49
, pp.
1279
1287
.
51.
Maria
,
R.H.
,
Belkacem
,
B.
, and
Ahmed
,
B.
,
2020
, “
Performance Analysis of a Parabolic Trough Concentrator with a Curved Secondary Reflector
,”
4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
,
Istanbul, Turkey
,
Oct. 22–24
,
IEEE, pp. 993–999
.
52.
Gong
,
J.-h.
,
Wang
,
J.
,
Lund
,
P. D.
,
Hu
,
E.-y.
,
Xu
,
Z.-c.
,
Liu
,
G.-p.
, and
Li
,
G.-s.
,
2020
, “
Improving the Performance of a 2-Stage Large Aperture Parabolic Trough Solar Concentrator Using a Secondary Reflector Designed by Adaptive Method
,”
Renewable Energy
,
152
, pp.
23
33
53.
Wang
,
K.
,
He
,
Y.
, and
Cheng
,
Z.
,
2014
, “
A Design Method and Numerical Study for a New Type Parabolic Trough Solar Collector With Uniform Solar Flux Distribution
,”
Sci. China Technol. Sci.
,
57
(
3
), pp.
531
540
.
54.
Chang
,
S.-W.
,
Liou
,
T.-M.
,
Chiang
,
K.
, and
Hong
,
G.
,
2008
, “
Heat Transfer and Pressure Drop in Rectangular Channel With Compound Roughness of V-Shaped Ribs and Deepened Scales
,”
Int. J. Heat. Mass. Transfer.
,
51
(
3–4
), pp.
457
468
.
55.
Lee
,
D. H.
,
Rhee
,
D. -H.
,
Kim
,
K. M.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2009
, “
Detailed Measurement of Heat/Mass Transfer With Continuous and Multiple V-Shaped Ribs in Rectangular Channel
,”
Energy
,
34
(
11
), pp.
1770
1778
56.
Kumar
,
A.
,
Saini
,
R.
, and
Saini
,
J.
,
2012
, “
Experimental Investigation on Heat Transfer and Fluid Flow Characteristics of Air Flow in a Rectangular Duct With Multi V-Shaped Rib With Gap Roughness on the Heated Plate
,”
Sol. Energy.
,
86
(
6
), pp.
1733
1749
57.
Kumar
,
A.
,
Saini
,
R.
, and
Saini
,
J.
,
2013
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Multi V-Shaped With Gap Rib as Artificial Roughness
,”
Renewable Energy
,
58
, pp.
151
163
58.
Kumar
,
A.
, and
Kim
,
M.-H.
,
2015
, “
Effect of Roughness Width Ratios in Discrete Multi V-Rib With Staggered Rib Roughness on Overall Thermal Performance of Solar Air Channel
,”
Sol. Energy.
,
119
, pp.
399
414
59.
Kumar
,
A.
, and
Kim
,
M.-H.
,
2016
, “
Thermohydraulic Performance of Rectangular Ducts With Different Multiple V-Rib Roughness Shapes: A Comprehensive Review and Comparative Study
,”
Renewable. Sustainable. Energy. Rev.
,
54
, pp.
635
652
.
60.
Promvonge
,
P.
, and
Skullong
,
S.
,
2021
, “
Enhanced Thermal Performance in Tubular Heat Exchanger Contained With V-Shaped Baffles
,”
Appl. Therm. Eng.
,
185
, p.
116307
.
61.
Maatallah
,
T.
, and
Ammar
,
R.
,
2020
, “
Design, Modeling, and Optimization of a Dual Reflector Parabolic Trough Concentration System
,”
Int. J. Energy Res.
,
44
(
5
), pp.
3711
3723
.
62.
Bushra
,
N.
, and
Hartmann
,
T.
,
2019
, “
A Review of State-of-the-Art Reflective Two-Stage Solar Concentrators: Technology Categorization and Research Trends
,”
Renewable. Sustainable. Energy. Rev.
,
114
, p.
109307
.
63.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
64.
Petukhov
,
B.S.
,
1970
, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,”
Advances in Heat Transfer
, Vol.
6
,
J. P.
Hartnet
,
T. F.
Irvine, Jr.
, eds.,
Academic Press
,
New York
, pp.
503
564
.
You do not currently have access to this content.