Abstract

Molten chloride salts are being given strong consideration for use in heat transfer and storage in concentrating solar power (CSP) systems as well as in some nuclear reactor applications. Containment of the molten salt, particularly at the highest temperatures, is a major material concern and has received considerable study. Another material issue is the pumps that will be required to move the molten salt along with the bearing materials that will be required to have sufficient corrosion resistance as well as wear resistance in the high temperature salt. A pair of coordinated studies in our laboratory has addressed the corrosion, and the wear issues of candidate bearing materials including the selection of candidate materials as well as their performance in a molten sodium chloride-potassium chloride-magnesium chloride salt environment. This article addresses the selection of candidate materials and their chemical compatibility with the molten salt. The studies have identified material pairs that have suitable properties for use as bearings that would be immersed in molten chloride salt.

References

1.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
, and
Ma
,
Z.
,
2017
,
Concentrating Solar Power Gen3 Demonstration Roadmap
,” No. NREL/TP-5500-67464.
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
2.
Raiman
,
S. S.
, and
Lee
,
S.
,
2018
, “
Aggregation and Data Analysis of Corrosion Studies in Molten Chloride and Fluoride Salts
,”
J. Nucl. Mater.
,
511
, pp.
523
535
.
3.
He
,
X.
,
Wang
,
R.
,
Sulejmanovic
,
D.
,
Robb
,
K. R.
,
Keiser
,
J. R.
,
Oldinski
,
K.
, and
Qu
,
J.
,
2021
, “
Investigation of Tribological Behavior of Ceramic-Alloy Contacts in Molten Salt Lubrication for Concentrating Solar Power
,”
Sol. Energy Mater. Sol. Cells
,
225
, p.
111065
.
4.
Sarvghad
,
M.
,
Maher
,
S. D.
,
Collard
,
D.
,
Tassan
,
M.
,
Will
,
G.
, and
Steinberg
,
T. A.
,
2018
, “
Materials Compatibility for the Next Generation of Concentrated Solar Power Plants
,”
Energy Storage Mater.
,
14
, pp.
179
198
.
5.
Guo
,
S.
,
Zhang
,
J.
,
Wu
,
W.
, and
Zhou
,
W.
,
2018
, “
Corrosion in the Molten Fluoride and Chloride Salts and Materials Development for Nuclear Applications
,”
Prog. Mater. Sci.
,
97
, pp.
448
487
.
6.
Sun
,
H.
,
Zhang
,
P.
, and
Wang
,
J.
,
2018
, “
Effects of Alloying Elements on the Corrosion Behavior of Ni-Based Alloys in Molten NaCl-KCl-MgCl2 Salt at Different Temperatures
,”
Corros. Sci.
,
143
, pp.
187
199
.
7.
Xu
,
X.
,
Wang
,
X.
,
Li
,
P.
,
Li
,
Y.
,
Hao
,
Q.
,
Xiao
,
B.
,
Elsentriecy
,
H.
, and
Gervasio
,
D.
,
2018
, “
Experimental Test of Properties of KCl-MgCl2 Eutectic Molten Salt for Heat Transfer and Thermal Storage Fluid in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051011
.
8.
Sun
,
H.
,
Wang
,
J.
,
Li
,
Z.
,
Sun
,
P.
, and
Su
,
X.
,
2018
, “
Corrosion Behavior of 316SS and Ni-Based Alloys in a Ternary NaCl-KCl-MgCl2 Molten Salt
,”
Sol. Energy
,
171
, pp.
320
329
.
9.
Vignarooban
,
K.
,
Pugazhendhi
,
P.
,
Tucker
,
C.
,
Garvasio
,
D.
, and
Kannan
,
A. M.
,
2014
, “
Corrosion Resistance of Hastelloys in Molten Metal-Chloride Heat-Transfer Fluids for Concentrating Solar Power Applications
,”
Sol. Energy
,
102
, pp.
62
69
.
10.
Gomez-Vidal
,
J. C.
, and
Tirawat
,
R.
,
2016
, “
Corrosion of Alloys in a Chloride Molten Salt (NaCl-LiCl) for Solar Thermal Technologies
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
234
244
.
11.
Barth
,
D. L.
,
Pacheco
,
J. E.
,
Kolb
,
W. J.
, and
Rush
,
E. E.
,
2002
, “
Development of a High-Temperature, Long-Shafted, Molten-Salt Pump for Power Tower Applications
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
170
175
.
12.
Mayes
,
R. T.
,
Kurley
,
J. M.
, III
,
Halstenberg
,
P. W.
,
McAlister
,
A.
,
Sulejmanovic
,
D.
,
Raiman
,
S. S.
,
Dai
,
S.
, and
Pint
,
B. A.
,
2018
, “
Purification of Chloride Salts forConcentrated Solar Applications
,” ORNL/LTR-2018/1052, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN.
13.
Zhao
,
Y.
, and
Vidal
,
J.
,
2020
, “
Potential Scalability of a Cost-Effective Purification Method for MgCl2-Containing Salts for Next-Generation Concentrating Solar Power Technologies
,”
Sol. Energy Mater. Sol. Cells
,
215
, p.
110663
.
14.
Pint
,
B. A.
,
McMurray
,
J. W.
,
Willoughby
,
A. W.
,
Kurley III
,
J. M.
,
Pearson
,
S. R.
,
Lance
,
M. J.
,
Leonard
,
D. N.
, et al
,
2019
, “
Re-Establishing the Paradigm for Evaluating Halide Salt Compatibility to Study Commercial Chloride Salts at 600 °C–800 °C
,”
Mater. Corros.
,
70
(
8
), pp.
1439
1449
.
15.
Takeuchi
,
M.
,
Kato
,
T.
,
Hanada
,
K.
,
Koizumi
,
T.
, and
Aose
,
S.
,
2005
, “
Corrosion Resistance of Ceramic Materials in Pyrochemical Reprocessing Condition by Using Molten Salt for Spent Nuclear Oxide Fuel
,”
J. Phys. Chem. Solids
,
66
(
2–4
), pp.
521
525
.
16.
Tressler
,
R. E.
,
Meiser
,
M. D.
, and
Yonushonis
,
T.
,
1976
, “
Molten Salt Corrosion of SiC and Si3N4 Ceramics
,”
J. Am. Ceram. Soc.
,
59
(
5–6
), pp.
278
279
.
17.
Yoder
,
G. L.
,
Heatherly
,
D.
,
Wilson
,
D.
, and
Caja
,
M.
,
2016
, “
FLiNaK Compatibility Studies with Inconel 600 and Silicon Carbide
,”
Nucl. Eng. Des.
,
307
, pp.
172
180
.
You do not currently have access to this content.