Abstract

Thermochemical redox cycles are a promising route to producing solar fuels. In this work, a novel reactor train system (RTS) is proposed for the efficient conversion of solar thermal energy into hydrogen. This system is capable of recovering thermal energy from redox materials, which is necessary for achieving high efficiency but has been difficult to realize in practice. The RTS overcomes technical challenges of high-temperature thermochemical reactors like solid conveying and sealing, while enabling continuous fuel production and efficient oxygen removal during metal oxide reduction. The RTS is comprised of several identical reactors arranged in a closed loop and cycling between reduction and oxidation steps. In between these steps, the reactors undergo solid heat recovery in a counterflow radiative heat exchanger. The RTS can achieve heat recovery effectiveness of 80% for a train producing 100 kg-H2/day with a 60 min cycle time. The RTS can take advantage of thermal energy storage to operate round-the-clock. Further, it implements waste heat recovery to capture the exothermic heat of water-splitting. If all auxiliary energy demands can be satisfied with such waste heat, the RTS base configuration achieves 30% heat-to-hydrogen conversion efficiency, which is more than four times that of current state-of-the-art thermochemical systems.

References

1.
Grimm
,
A.
,
de Jong
,
W. A.
, and
Kramer
,
G. J.
,
2020
, “
Renewable Hydrogen Production: A Techno-Economic Comparison of Photoelectrochemical Cells and Photovoltaic-Electrolysis
,”
Int. J. Hydrogen Energy
,
45
(
43
), pp.
22545
22555
.
2.
Collodi
,
G.
,
Azzaro
,
G.
,
Ferrari
,
N.
, and
Santos
,
S.
,
2017
, “
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production With NG as Feedstock and Fuel
,”
Energy Proc.
,
114
, pp.
2690
2712
.
3.
Gallardo
,
F. I.
,
Monforti Ferrario
,
A.
,
Lamagna
,
M.
,
Bocci
,
E.
,
Astiaso Garcia
,
D.
, and
Baeza-Jeria
,
T. E.
,
2021
, “
A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation From Atacama Desert to Japan
,”
Int. J. Hydrogen Energy
,
46
(
26
), pp.
13709
13728
.
4.
Rosenstiel
,
A.
,
Monnerie
,
N.
,
Dersch
,
J.
,
Roeb
,
M.
,
Pitz-Paal
,
R.
, and
Sattler
,
C.
,
2021
, “
Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design
,”
Energies
,
14
(
12
), pp.
3437
.
5.
Schäppi
,
R.
,
Rutz
,
D.
,
Dähler
,
F.
,
Muroyama
,
A.
,
Haueter
,
P.
,
Lilliestam
,
J.
,
Patt
,
A.
,
Furler
,
P.
, and
Steinfeld
,
A.
,
2021
, “
Drop-In Fuels From Sunlight and Air
,”
Nature
,
601
(
7891
), pp.
63
68
.
6.
Zoller
,
S.
,
2020
, “
A 50 kW Solar Thermochemical Reactor for Syngas Production Utilizing Porous Ceria Structures
,”
Doctoral thesis
,
ETH Zurich
,
Zürich, Switzerland
.
7.
Säck
,
J. P.
,
Breuer
,
S.
,
Cotelli
,
P.
,
Houaijia
,
A.
,
Lange
,
M.
,
Wullenkord
,
M.
,
Spenke
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
High Temperature Hydrogen Production: Design of a 750 KW Demonstration Plant for a Two Step Thermochemical Cycle
,”
Sol. Energy
,
135
, pp.
232
241
.
8.
Haeussler
,
A.
,
Abanades
,
S.
,
Julbe
,
A.
,
Jouannaux
,
J.
, and
Cartoixa
,
B.
,
2020
, “
Solar Thermochemical Fuel Production From H2O and CO2 Splitting Via Two-Step Redox Cycling of Reticulated Porous Ceria Structures Integrated in a Monolithic Cavity-Type Reactor
,”
Energy
,
201
, p.
117649
.
9.
Hoskins
,
A. L.
,
Millican
,
S. L.
,
Czernik
,
C. E.
,
Alshankiti
,
I.
,
Netter
,
J. C.
,
Wendelin
,
T. J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2019
, “
Continuous On-Sun Solar Thermochemical Hydrogen Production Via an Isothermal Redox Cycle
,”
Appl. Energy
,
249
, pp.
368
376
.
10.
Brendelberger
,
S.
,
Holzemer-Zerhusen
,
P.
,
Von Storch
,
H.
, and
Sattler
,
C.
,
2019
, “
Performance Assessment of a Heat Recovery System for Monolithic Receiver-Reactors
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021009
.
11.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.
12.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
.
13.
Diver
,
R. B.
,
Miller
,
J. E.
,
Siegel
,
N. P.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,” Proceedings of
ASME 2010 4th International Conference on Energy Sustainability
,
San Diego, CA
,
July 23–26
, pp.
97
104.
14.
Ermanoski
,
I.
, and
Orozco
,
A.
,
2015
, “
C2R2: Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing
,”
SANDIA Report
, Report No. SAND2015-7320, pp.
1
46
.
15.
Budama
,
V. K.
,
Johnson
,
N. G.
,
McDaniel
,
A.
,
Ermanoski
,
I.
, and
Stechel
,
E. B.
,
2018
, “
Thermodynamic Development and Design of a Concentrating Solar Thermochemical Water-Splitting Process for Co-Production of Hydrogen and Electricity
,”
Int. J. Hydrogen Energy
,
43
(
37
), pp.
17574
17587
.
16.
Richter
,
S.
,
Brendelberger
,
S.
,
Gersdorf
,
F.
,
Oschmann
,
T.
, and
Sattler
,
C.
,
2020
, “
Demonstration Reactor System for the Indirect Solar-Thermochemical Reduction of Redox Particles—The Particle Mix Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050911
.
17.
Yuan
,
C.
,
Jarrett
,
C.
,
Chueh
,
W.
,
Kawajiri
,
Y.
, and
Henry
,
A.
,
2015
, “
A New Solar Fuels Reactor Concept Based on a Liquid Metal Heat Transfer Fluid: Reactor Design and Efficiency Estimation
,”
Sol. Energy
,
122
, pp.
547
561
.
18.
Falter
,
C. P.
,
Sizmann
,
A.
, and
Pitz-Paal
,
R.
,
2015
, “
Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
122
, pp.
1296
1308
.
19.
Falter
,
C. P.
, and
Pitz-Paal
,
R.
,
2017
, “
A Generic Solar-Thermochemical Reactor Model With Internal Heat Diffusion for Counter-Flow Solid Heat Exchange
,”
Sol. Energy
,
144
, pp.
569
579
.
20.
Siegrist
,
S.
,
Von Storch
,
H.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Moving Brick Receiver-Reactor: A Solar Thermochemical Reactor and Process Design With a Solid-Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021009
.
21.
Siegrist
,
S.
, and
Storch
,
H. v.
,
2018
, German Patent DE File Number: 10 2018 201 319.5.
22.
Storch
,
H. v.
, and
Siegrist
,
S.
,
2018
, German Patent DE File Number: 10 2018 201 317.9.
23.
Holzemer-Zerhusen
,
P.
,
Brendelberger
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2021
, “
Oxygen Crossover in Solid–Solid Heat Exchangers for Solar Water and Carbon Dioxide Splitting: A Thermodynamic Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
071301
.
24.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
25.
DeAngelis
,
F.
,
Seyf
,
H. R.
,
Berman
,
R.
,
Schmidt
,
G.
,
Moore
,
D.
, and
Henry
,
A.
,
2018
, “
Design of a High Temperature (1350 °C) Solar Receiver Based on a Liquid Metal Heat Transfer Fluid: Sensitivity Analysis
,”
Sol. Energy
,
164
, pp.
200
209
.
26.
Rowe
,
S. C.
,
Hischier
,
I.
,
Palumbo
,
A. W.
,
Chubukov
,
B. A.
,
Wallace
,
M. A.
,
Viger
,
R.
,
Lewandowski
,
A.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
,
2018
, “
Nowcasting, Predictive Control, and Feedback Control for Temperature Regulation in a Novel Hybrid Solar-Electric Reactor for Continuous Solar-Thermal Chemical Processing
,”
Sol. Energy
,
174
, pp.
474
488
.
27.
Stack
,
D.
, and
Forsberg
,
C.
,
2021
, “
Combined Cycle Gas Turbines With Electrically-Heated Thermal Energy Storage for Dispatchable Zero-Carbon Electricity
,”
Proceedings of ASME 2021 Power Conference
,
Virtual
,
July 20–22
, p.
V001T03A005
, Paper No. POWER2021-65528.
28.
Ermanoski
,
I.
,
Miller
,
J. E.
, and
Allendorf
,
M. D.
,
2014
, “
Efficiency Maximization in Solar-Thermochemical Fuel Production: Challenging the Concept of Isothermal Water Splitting
,”
Phys. Chem. Chem. Phys.
,
16
(
18
), pp.
8418
8427
.
29.
Bulfin
,
B.
,
Lange
,
M.
,
de Oliveira
,
L.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Solar Thermochemical Hydrogen Production Using Ceria Zirconia Solid Solutions : Efficiency Analysis
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19320
19328
.
30.
Ehrhart
,
B. D.
,
Muhich
,
C. L.
,
Al-Shankiti
,
I.
, and
Weimer
,
A. W.
,
2016
, “
System Efficiency for Two-Step Metal Oxide Solar Thermochemical Hydrogen Production—Part 1: Thermodynamic Model and Impact of Oxidation Kinetics
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
19881
19893
.
32.
Kyrimis
,
S.
,
Le Clercq
,
P.
, and
Brendelberger
,
S.
,
2019
, “
3D Modelling of a Solar Thermochemical Reactor for MW Scaling-up Studies
,”
AIP Conf. Proc.
,
2126
(
1
), p.
180013
.
35.
Bala Chandran
,
B.
,
De Smith
,
R.
, and
Davidson
,
J. H.
,
2015
, “
Model of an Integrated Solar Thermochemical Reactor/Reticulated Ceramic Foam Heat Exchanger for Gas-Phase Heat Recovery
,”
Int. J. Heat Mass Transf.
,
81
, pp.
404
414
.
36.
Ermanoski
,
I.
,
2014
, “
Cascading Pressure Thermal Reduction for Efficient Solar Fuel Production
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13114
13117
.
37.
Patankar
,
A. S.
,
Wu
,
X.
,
Tuller
,
H. L.
, and
Ghoniem
,
A. F.
,
2022
, “
Efficient Solar Thermochemical Hydrogen Production in a Reactor Train System With Thermochemical Oxygen Removal
,”
ASME IMECE
,
Columbus, OH
,
Oct. 30–Nov. 3
.
38.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
39.
Hussain
,
N. A.
, and
Siegel
,
R.
,
1975
, “
Radiation Exchange for a System With Partially Transmitting Wall
,”
Lett. Heat Mass Transfer
,
2
(
2
), pp.
105
114
.
40.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press, Elsevier Inc
,
Amsterdam, The Netherlands
.
41.
Panlener
,
R. J.
,
Garnier
,
J. E.
, and
Blumenthal
,
R. N.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
42.
COMSOL Multiphysics® v. 6.0. www.comsol.com, COMSOL AB, Stockholm, Sweden.
43.
Soares
,
C.
,
2015
, “Gas Turbine Configurations and Heat Cycles,”
Chapter 3 of Book: Gas Turbines: A Handbook of Air, Land and Sea Applications
,
Butterworth-Heinemann, Elsevier Inc
,
London
.
44.
James
,
D. L.
,
Siegel
,
N. P.
,
Diver
,
R. B.
,
Boughton
,
B. D.
, and
Hogan
,
R. E.
,
2006
, “
Numerical Modeling of Solar Thermo-Chemical Water-Splitting Reactor
,”
ASME 2006 International Solar Energy Conference
,
Denver, CO
,
July 8–13
, pp.
221
227
.
45.
Brendelberger
,
S.
,
Holzemer-Zerhusen
,
P.
,
Vega Puga
,
E.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2022
, “
Study of a New Receiver-Reactor Cavity System With Multiple Mobile Redox Units for Solar Thermochemical Water Splitting
,”
Sol. Energy
,
235
, pp.
118
128
.
46.
Bulfin
,
B.
,
Miranda
,
M.
, and
Steinfeld
,
A.
,
2021
, “
Performance Indicators for Benchmarking Solar Thermochemical Fuel Processes and Reactors
,”
Front. Energy Res.
,
9
, p.
677980
.
47.
Zoller
,
S.
,
Koepf
,
E.
,
Steinfeld
,
A.
,
Zoller
,
S.
,
Koepf
,
E.
,
Nizamian
,
D.
,
Stephan
,
M.
,
Patane
,
A.
,
Haueter
,
P.
, and
Romero
,
M.
,
2022
, “
A Solar Tower Fuel Plant for the Thermochemical Production of Kerosene From H2O and CO2
,”
Joule
,
6
(
7
), pp.
1606
1616
.
48.
Zhang
,
S. D.
,
Sun
,
F. X.
,
Xia
,
X. L.
,
Sun
,
C.
, and
Ruan
,
L. M.
,
2018
, “
Multi-Layer-Combination Method to Retrieve High-Temperature Spectral Properties of C-Plane Sapphire
,”
Int. J. Heat Mass Transf.
,
121
, pp.
1011
1020
.
49.
Ditmars
,
D. A.
,
Ishihara
,
S.
,
Chang
,
S. S.
,
Bernstein
,
G.
, and
West
,
E. D.
,
1982
, “
Enthalpy and Heat-Capacity Standard Reference Material: Synthetic Sapphire (a-A1 2 0 3) From 10 to 2250 K
,”
J. Res. Natl. Bur. Stondards
,
87
(
2
), pp.
159
163
.
50.
Furler
,
P.
,
Scheffe
,
J.
,
Marxer
,
D.
,
Gorbar
,
M.
,
Bonk
,
A.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2014
, “
Thermochemical CO2 Splitting Via Redox Cycling of Ceria Reticulated Foam Structures With Dual-Scale Porosities
,”
Phys. Chem. Chem. Phys.
,
16
(
22
), pp.
10503
10511
.
51.
Ackermann
,
S.
,
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2017
, “
Reticulated Porous Ceria Undergoing Thermochemical Reduction With High-Flux Irradiation
,”
Int. J. Heat Mass Transf.
,
107
, pp.
439
449
.
52.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
, pp.
373
383
.
53.
Ackermann
,
S.
, and
Steinfeld
,
A.
,
2017
, “
Spectral Hemispherical Reflectivity of Nonstoichiometric Cerium Dioxide
,”
Sol. Energy Mater. Sol. Cells
,
159
, pp.
167
171
.
54.
Kim
,
J. J.
,
Bishop
,
S. R.
,
Thompson
,
N.
,
Kuru
,
Y.
, and
Tuller
,
H. L.
,
2012
, “
Optically Derived Energy Band Gap States of Pr in Ceria
,”
Solid State Ionics
,
225
, pp.
198
200
.
55.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 KW Solar Receiver-Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
.
56.
Brendelberger
,
S.
,
von Storch
,
H.
,
Bulfin
,
B.
, and
Sattler
,
C.
,
2017
, “
Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems
,”
Sol. Energy
,
141
, pp.
91
102
.
57.
Jarrett
,
C.
,
Chueh
,
W.
,
Yuan
,
C.
,
Kawajiri
,
Y.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2016
, “
Critical Limitations on the Efficiency of Two-Step Thermochemical Cycles
,”
Sol. Energy
,
123
, pp.
57
73
.
58.
Ehrhart
,
B. D.
,
Muhich
,
C. L.
,
Al-Shankiti
,
I.
, and
Weimer
,
A. W.
,
2016
, “
System Efficiency for Two-Step Metal Oxide Solar Thermochemical Hydrogen Production—Part 3: Various Methods for Achieving Low Oxygen Partial Pressures in the Reduction Reaction
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
19904
19914
.
59.
Brendelberger
,
S.
,
Vieten
,
J.
,
Vidyasagar
,
M. J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2018
, “
Demonstration of Thermochemical Oxygen Pumping for Atmosphere Control in Reduction Reactions
,”
Sol. Energy
,
170
, pp.
273
279
.
60.
Patankar
,
A.
,
Wu
,
X.
,
Choi
,
W.
,
Tuller
,
H. L.
, and
Ghoniem
,
A. F.
,
2021
, “
A Reactor Train System for Efficient Solar Thermochemical Fuel Production
,”
Proceedings of ASME IMECE 2021
,
Virtual
,
Nov. 1–5
, p.
V08BT08A024
, Paper No. IMECE2021-69716.
You do not currently have access to this content.