Abstract

In the application of plate heat exchangers (PHEs), fouling has always been an intractable problem that results in decreasing the heat transfer efficiency and increasing the associated pressure drop. Plate heat exchangers are employed in solar energy systems to transfer the solar heat to a working fluid that can be used for heating or power generation applications depending on the amount of heat collected per unit surface area. The work upon which this article partially reports presents analyses of the factors influencing the antifouling performance of two types of nanocomposite surfaces, namely, Ni-P-PTFE and Ni-P-TiO2. In this work, the flow and thermal fields in PHEs are numerically analyzed. Then, experiments are conducted to verify the numerical results. The influencing factors of fouling are theoretically analyzed employing the Kern–Seaton fouling model and the von Kármán analogy. Results of the work performed here show that the friction factor f, the mass transfer coefficient Km, and the shear stress τs of the Ni-P-TiO2 and Ni-P-PTFE nanocomposite surfaces all decrease compared with an uncoated surface. Results also indicate that the deposit bond strength ζ of the Ni-P-TiO2 and Ni-P-PTFE coatings decrease by 42.1% and 30.5%, respectively. Furthermore, the Ni-P-TiO2 coating was found to increase the probability P of sticking to the surface by 24.9%, while the Ni-P-PTFE coating decreased the sticking probability P by 2.7%.

References

1.
Zheng
,
D.
,
Wang
,
J.
,
Chen
,
Z. X.
,
Baleta
,
J.
, and
Sunden
,
B.
,
2020
, “
Performance Analysis of a Plate Heat Exchanger Using Various Nanofluids
,”
Int. J. Heat Mass Transfer
,
158
, p.
119993
.
2.
Lin
,
W. Z.
,
Zhang
,
W. B.
,
Ling
,
Z. Y.
,
Fang
,
X. M.
, and
Zhang
,
Z. G.
,
2020
, “
Experimental Study of the Thermal Performance of a Novel Plate Type Heat Exchanger With Phase Change Material
,”
Appl. Therm. Eng.
,
178
, p.
115630
.
3.
Metwally
,
H. M.
, and
Manglik
,
R. M.
,
2004
, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2283
2292
.
4.
Zhong
,
Y.
,
Deng
,
K.
,
Zhao
,
S.
,
Hu
,
J.
,
Zhong
,
Y.
,
Li
,
Q.
,
Wu
,
Z.
,
Lu
,
Z.
, and
Wen
,
Q.
,
2020
, “
Experimental and Numerical Study on Hydraulic Performance of Chevron Brazed Plate Heat Exchanger at Low Reynolds Number
,”
Processes
,
8
(
9
), p.
1076
.
5.
Kim
,
M.
,
Baik
,
Y.-J.
,
Park
,
S.-R.
,
Ra
,
H.-S.
, and
Lim
,
H.
,
2010
, “
Experimental Study on Corrugated Cross-Flow Air-Cooled Plate Heat Exchangers
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1265
1272
.
6.
Grabenstein
,
V.
,
Polzin
,
A.-E.
, and
Kabelac
,
S.
,
2017
, “
Experimental Investigation of the Flow Pattern, Pressure Drop and Void Fraction of Two-Phase Flow in the Corrugated Gap of a Plate Heat Exchanger
,”
Int. J. Multiphase Flow
,
91
, pp.
155
169
.
7.
Turk
,
C.
,
Aradag
,
S.
, and
Kakac
,
S.
,
2016
, “
Experimental Analysis of a Mixed-Plate Gasketed Plate Heat Exchanger and Artificial Neural Net Estimations of the Performance as an Alternative to Classical Correlations
,”
Int. J. Therm. Sci.
,
109
, pp.
263
269
.
8.
Tiwari
,
A. K.
,
Ghosh
,
P.
,
Sarkar
,
J.
,
Dahiya
,
H.
, and
Parekh
,
J.
,
2014
, “
Numerical Investigation of Heat Transfer and Fluid Flow in Plate Heat Exchanger Using Nanofluids
,”
Int. J. Therm. Sci.
,
85
, pp.
93
103
.
9.
Steinhagen
,
R.
,
Muller-Steinhagen
,
H.
, and
Maani
,
K.
,
1993
, “
Problems and Costs Due to Heat Exchangers Fouling in New Zealand Industries
,”
Heat Transfer Eng.
,
14
(
1
), pp.
19
30
.
10.
Song
,
K. S.
,
Lim
,
J.
,
Yun
,
S.
,
Kim
,
D.
, and
Kim
,
Y.
,
2019
, “
Composite Fouling Characteristics of CaCO3 and CaSO4 in Plate Heat Exchangers at Various Operating and Geometric Conditions
,”
Int. J. Heat Mass Transfer
,
136
, pp.
555
562
.
11.
Li
,
W.
,
Zhou
,
K.
,
Manglik
,
R. M.
,
Li
,
G. Q.
, and
Bergles
,
A. E.
,
2016
, “
Investigation of Caco3 Fouling in Plate Heat Exchangers
,”
Heat & Mass Transfer
,
52
(
11
), pp.
2401
2414
.
12.
Huang
,
K.
, and
Goddard
,
J. M.
,
2015
, “
Influence of Fluid Milk Product Composition on Fouling and Cleaning of Ni–PTFE Modified Stainless Steel Heat Exchanger Surfaces
,”
J. Food Eng.
,
158
(
8
), pp.
22
29
.
13.
Akesso
,
L.
,
Pettitt
,
M. E.
,
Callow
,
J. A.
,
Callow
,
M. E.
,
Stallard
,
J.
,
Teer
,
D.
,
Liu
,
C.
,
Wang
,
S.
,
Zhao
,
Q.
,
D'Souza
,
F.
, and
Willemsen
,
P.R.
,
2009
, “
The Potential of Nano-Structured Silicon Oxide Type Coatings Deposited by PACVD for Control of Aquatic Biofouling
,”
Biofouling
,
25
(
1
), pp.
55
67
.
14.
Oldani
,
V.
,
Bianchi
,
C. L.
,
Biella
,
S.
,
Pirola
,
C.
, and
Cattaneo
,
G.
,
2016
, “
Perfluoropolyethers Coatings Design for Fouling Reduction on Heat Transfer Stainless-Steel Surfaces
,”
Heat Transfer Eng.
,
37
(
2
), pp.
210
219
.
15.
Matjie
,
R.
,
Zhang
,
S.
,
Zhao
,
Q.
,
Mabuza
,
N.
, and
Bunt
,
J. R.
,
2016
, “
Tailored Surface Energy of Stainless Steel Plate Coupons to Reduce the Adhesion of Aluminium Silicate Deposit
,”
Fuel
,
181
, pp.
573
578
.
16.
Zhao
,
Q.
,
2004
, “
Effect of Surface Free Energy of Graded Ni-P-PTFE Coatings on Bacterial Adhesion
,”
Surf. Coat. Technol.
,
185
(
2–3
), pp.
199
204
.
17.
Li
,
W.
,
2022
, “
Non-equilibrium Thermal Fluctuations of Flow in Thermal Systems
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021011
.
18.
Li
,
W.
,
2020
, “
Oscillatory Fouling in Condensers in Cooling Tower Systems
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
2
), p.
021010
.
19.
De Bonis
,
M. V.
, and
Ruocco
,
G.
,
2009
, “
Conjugate Fluid Flow and Kinetics Modeling for Heat Exchanger Fouling Simulation
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
2006
2012
.
20.
Kern
,
D. Q.
, and
Seaton
,
R. E.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Br. Chem. Eng.
,
4
(
5
), pp.
258
262
.
21.
Gao
,
R.
,
Shen
,
C.
,
Wang
,
X. L.
, and
Yao
,
Y.
,
2019
, “
Experimental Study on the Sticking Probability and Deposit Bond Strength of Fouling in Enhanced Tubes
,”
Int. Commun. Heat Mass Transf.
,
103
, pp.
17
23
.
22.
Li
,
W.
,
2007
, “
Modeling Liquid-Side Particulate Fouling in Internal Helical-Rib Tubes
,”
Chem. Eng. Sci.
,
62
(
16
), pp.
4204
4213
.
23.
Li
,
W.
,
2003
, “
The Internal Surface Area Basis, a Key Issue of Modeling Fouling in Enhanced Heat Transfer Tubes
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4345
4349
.
24.
Li
,
W.
, and
Webb
,
R. L.
,
2002
, “
Fouling Characteristics of Internal Helical-Rib Roughness Tubes Using Low-Velocity Cooling Tower Water
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1685
1691
.
25.
Webb
,
R. L.
, and
Li
,
W.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part I: Long-Term Fouling Data
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3567
3578
.
26.
Li
,
W.
, and
Li
,
G. Q.
,
2010
, “
Modeling Cooling Tower Fouling in Helical-Rib Tubes Based on Von-Karman Analogy
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2715
2721
.
27.
Karman
,
T. V.
,
1939
, “
The Analogy Between Fluid Friction and Heat Transfer
,”
Trans. ASME
,
61
, pp.
705
710
.
28.
Liu
,
Z. D.
,
Chen
,
Z. C.
,
Li
,
W.
,
Ding
,
Z. K.
, and
Xu
,
Z. M.
,
2020
, “
Composite Fouling Characteristics on Ni-P-PTFE Nanocomposite Surface in Corrugated Plate Heat Exchanger
,”
Heat Transfer Eng.
,
42
(
22
), pp.
1877
1888
.
29.
Chien
,
H.-W.
,
Chen
,
X.-Y.
,
Tsai
,
W.-P.
, and
Lee
,
M. S.
,
2020
, “
Inhibition of Biofilm Formation by Rough Shark Skin-Patterned Surfaces
,”
Colloids Surf. B
,
186
, p.
110738
.
30.
Nishimoto
,
S.
, and
Bhushan
,
B.
,
2013
, “
Bioinspired Self-Cleaning Surfaces With Superhydrophobicity, Superoleophobicity, and Superhydrophilicity
,”
RSC Adv.
,
3
(
3
), pp.
671
690
.
31.
Shen
,
C.
,
Cirone
,
C.
, and
Wang
,
X. L.
,
2015
, “
A Method for Developing a Prediction Model of Water-Side Fouling on Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
85
, pp.
336
342
.
32.
Zhang
,
Z.
,
Liu
,
Y.
,
Zhang
,
H.
, and
Xu
,
Z.
,
2017
, “
Numerical Calculation on Effective Thermal Conductivity of Fouling Based on the Finite Element Method
,”
Proc. CSEE
,
37
(
10
), pp.
2927
2932
.
You do not currently have access to this content.