Abstract

A computational fluid dynamics study about the aerodynamic loads over a heliostat due to an atmospheric boundary layer flow using a modified k–ɛ turbulence model is presented. A new formulation is used, in which the model quantities vary with the velocity field. Modified wall functions for roughness were used at the bottom of the computational domain to achieve horizontal homogeneity of the airflow. Good horizontal homogeneity for the streamwise and spanwise velocity and turbulence intensity profiles were found. The incident profiles were compared with the inlet ones. The average percentage differences were 0.22% for velocity and 0.43% for turbulent intensity. Good agreement was found between the numerical data and theoretical values of the streamwise and spanwise shear stress at the bottom of the domain. The aerodynamic coefficients of the heliostat at different elevation angles were obtained, and a good agreement was found between the numerical data concerning the wind tunnel experimental values. An average percentage difference of 3.1% was found for drag, 6.5% for lift, and 6.0% for overturning. A significant improvement was obtained by using this new formulation with respect to a non-modified k–ɛ turbulence model. The average differences of the aerodynamic coefficients were 6.6% for drag, 12.4% for lift, and 10.1% for overturning. The velocity, turbulent kinetic energy, and pressure fields at different elevation angles were analyzed. It was found that at an elevation of 60 deg, the stagnation point of the flow occurs at the superior edge of the heliostat, causing the maximum lift force over the structure.

References

1.
Trends in Renewable Energy
,” International Renewable Agency, https://public.tableau.com/views/IRENARETimeSeries, Accessed May 5, 2022.
2.
IRENA
,
2010
, “
Renewable Energy Cost Analysis—Concentrating Solar Power
,” Cost Analysis Series, Volume 1: Power Sector. https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis—Concentrating-Solar-Power
3.
Yuan
,
J. K.
,
Christian
,
J. M.
, and
Ho
,
C. K.
,
2015
, “
Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021016
.
4.
Todd Griffith
,
D.
,
Moya
,
A. C.
,
Ho
,
C. K.
, and
Hunter
,
P. S.
,
2014
, “
Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), pp.
567
576
.
5.
Vásquez-Arango
,
J. F.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2015
, “
Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051001
.
6.
Richards
,
P. J.
, and
Hoxey
,
R. P.
,
1993
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ɛ Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
145
153
.
7.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,” NASA Report No. NACA-TM-1292.
8.
Blocken
,
B.
,
Stathopoulos
,
T.
, and
Carmeliet
,
J.
,
2007
, “
CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems
,”
Atmos. Environ.
,
41
(
2
), pp.
238
252
.
9.
Zhang
,
X.
,
2009
, “
CFD Simulation of Neutral ABL Flows
,” Roskilde: Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Denmark Research Center Risoe, Report No. 1688(EN).
10.
Hargreaves
,
D. M.
, and
Wright
,
N. G.
,
2007
, “
On the Use of the k-ɛ Model in Commercial CFD Software to Model the Neutral Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
5
), pp.
355
369
.
11.
Yang
,
Y.
,
Gu
,
M.
,
Chen
,
S.
, and
Jin
,
X.
,
2009
, “
New Inflow Boundary Conditions for Modeling the Neutral Equilibrium Atmospheric Boundary Layer in Computational Wind Engineering
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
2
), pp.
88
95
.
12.
Fang
,
P.
,
Gu
,
M.
,
Tan
,
J.
,
Zhao
,
B.
, and
Shao
,
D.
,
2009
, “
Modeling the Neutral Atmospheric Boundary Layer Based on the Standard k-ɛ Turbulent Model: Modified Wall Functions
,”
Proceedings of the 7th Asia-Pacific Conference on Wind Engineering
,
Taipei, Taiwan
,
Nov. 8–12
.
13.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
14.
Parente
,
A.
, and
Benocci
,
C.
,
2010
, “
On the RANS Simulation of Neutral ABL Flows
,”
Proceedings of the Fifth International Symposium of Computational Wind Engineering (CWE2010)
,
Chapel Hill, NC
,
May 23–27
.
15.
Parente
,
A.
,
Gorlé
,
C.
,
Van Beeck
,
J.
, and
Benocci
,
C.
,
2011
, “
A Comprehensive Modelling Approach for the Neutral Atmospheric Boundary Layer: Consistent Inflow Conditions, Wall Function and Turbulence Model
,”
Bound. Layer Meteorol.
,
140
(
3
), pp.
411
428
.
16.
Leitl
,
B.
,
1998
,
Compilation of Experimental Data for Validation of Microscale Dispersion Models (CEDVAL)
,
Hamburg University
,
Hamburg, Germany
. http:/www.mi.uni-hamburg.de/ Cedval
17.
Cindori
,
M.
,
Juretic
,
F.
,
Kozmar
,
H.
, and
Dzijan
,
I.
,
2018
, “
Steady RANS Model of the Homogeneous Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
173
, pp.
289
301
.
18.
Abu-Zidan
,
Y.
,
Mendis
,
P.
, and
Gunawardena
,
T.
,
2020
, “
Impact of Atmospheric Boundary Layer Inhomogeneity in CFD Simulations of Tall Buildings
,”
Heliyon
,
6
(
7
), p.
e04274
.
19.
Parente
,
A.
,
Gorlé
,
C.
,
Van Beeck
,
J.
, and
Benocci
,
C.
,
2011
, “
Improved k-ɛ Model and Wall Function Formulation for the RANS Simulation of ABL Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
267
278
.
20.
Bendjebbas
,
H.
,
Abdellah El-Hadj
,
A.
, and
Abbas
,
M.
,
2018
, “
Numerical Simulation of the Effect of Wind Barrier Openings on High-Speed Wind Flow Around a Heliostat Field
,”
Appl. Math. Model.
,
61
, pp.
443
456
.
21.
Marais
,
M. D.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2015
, “
Computational Flow Optimization of Heliostat Aspect Ratio for Wind Direction and Elevation Angle
,”
Energy Procedia
,
69
, pp.
148
157
.
22.
Peterka
,
J. A.
,
Hosoya
,
N.
,
Bienkiewicz
,
B.
, and
Cermak
,
J. E.
,
1986
, “
Wind Load Reduction for Heliostats
,” Solar Energy Research Institute, Report No. SERI/STR-253-2859.
23.
Poulain
,
P. E.
,
Craig
,
K. J.
, and
Meyer
,
J. P.
,
2016
, “
Influence of the Gap Size on the Wind Loading on Heliostats
,”
International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Cape Town, South Africa
,
Oct. 13–16
,
Vol. 1734
, p.
020019
.
24.
Boddupalli
,
N.
,
Goenka
,
V.
, and
Chandra
,
L.
,
2017
, “
Fluid Flow Analysis Behind Heliostat Using LES and RANS: A Step Towards Optimized Field Design in Desert Regions
,”
AIP Conf. Proc.
,
1850
(
1
), p.
110001
.
25.
Aldaz
,
L.
,
Burisch
,
M.
,
Zaversky
,
F.
,
Sánchez
,
M.
,
Villasante
,
C.
, and
Olasolo
,
D.
,
2018
, “
Heliostat Structural Optimization: A Study of Wind Load Effects With CFD-FEA Methods
,”
AIP Conf. Proc.
,
2033
(
1
), p.
210001
.
26.
Wu
,
Z.
,
Gong
,
B.
,
Wang
,
Z.
,
Li
,
Z.
, and
Zang
,
C.
,
2010
, “
An Experimental and Numerical Study of the Gap Effect on Wind Load on Heliostat
,”
Renewable Energy
,
35
(
4
), pp.
797
806
.
27.
Emes
,
M. J.
,
Arjomandi
,
M.
,
Ghanadi
,
F.
, and
Kelso
,
R. M.
,
2017
, “
Effect of Turbulence Characteristics in the Atmospheric Surface Layer on the Peak Wind Loads on Heliostats in Stow Position
,”
Sol. Energy
,
157
, pp.
284
297
.
28.
Emes
,
M. J.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
, and
Kelso
,
R. M.
,
2018
, “
Investigation of Peak Wind Loads on Tandem Heliostats in Stow Position
,”
Renewable Energy
,
121
, pp.
548
558
.
29.
Mammar
,
M.
,
Djouimaa
,
S.
,
Gärtner
,
U.
, and
Hamidat
,
A.
,
2018
, “
Wind Loads on Heliostats of Various Column Heights: An Experimental Study
,”
Energy
,
143
, pp.
867
880
.
30.
Jafari
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Emes
,
M. J.
, and
Cazzolato
,
B. S.
,
2019
, “
Correlating Turbulence Intensity and Length Scale With the Unsteady Lift Force on Flat Plates in an Atmospheric Boundary Layer Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
189
, pp.
218
230
.
31.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
, pp.
604
617
.
32.
Emes
,
M. J.
,
Jafari
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2020
, “
The Influence of Atmospheric Boundary Layer Turbulence on the Design Wind Loads and Cost of Heliostats
,”
Sol. Energy
,
207
, pp.
796
812
.
33.
ANSYS, Inc.
,
2013
,
ANSYS Fluent Theory Guide
,
Canonsburg, PA
.
34.
Monticelli
,
M.
,
2012
, “
Generalized Wall Functions for RANS Computation of Turbulent Flows
,”
Master thesis
,
Politecnico di Milano
,
Milan, Italy
.
35.
Toparlar
,
Y.
,
Blocken
,
B.
,
Maiheu
,
B.
, and
Van Heijst
,
G.
,
2019
, “
CFD Simulation of the Near-Neutral Atmospheric Boundary Layer: New Temperature Inlet Profile Consistent With Wall Functions
,”
J. Wind Eng. Ind. Aerodyn.
,
191
, pp.
91
102
.
36.
Juretic
,
F.
, and
Kozmar
,
H.
,
2013
, “
Computational Modeling of the Neutrally Stratified Atmospheric Boundary Layer Flow Using Standard k-ɛ Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
115
, pp.
112
120
.
37.
Peterka
,
J. A.
,
Tan
,
Z.
,
Bienkiewicz
,
B.
, and
Cermak
,
J. E.
,
1987
, “
Mean and Peak Wind Load Reduction on Heliostats
,” Solar Energy Research Institute, Report No. SERI/STR-253-3212.
You do not currently have access to this content.