Abstract

The cooling fluid is a key factor in cooling photovoltaic (PV) panels especially in the case of concentrated irradiance. Maintaining the panel at low temperature increases its efficiency. This article investigates the usage of water-Al2O3 as a nanofluid for achieving the required cooling process. The particle concentrations and sizes are investigated to record their effect on heat transfer and pressure drop in the developing and developed regions. The research was performed using ansys cfd software with two different approaches: the single phase with average properties and the discrete phase with the Eulerian–Lagrangian framework. Both approaches are compared to experimental results found in the literature. Both approaches show good agreement with the experimental results, with some advantage for the single-phase model in both processing time and predicting heat transfer in the concentration range of 1–6% by volume. It was shown that the heat transfer coefficient is greatly enhanced by increasing the particle concentration or decreasing the particle size. Conversely, the usage of nanofluid causes a severe increase in the pumping power, especially with the increase in concentration and the reduction in particle size. Thus, a system optimization was suggested to raise the overall system efficiency for photovoltaic applications.

References

1.
Abd-Elhady
,
M. S.
,
Serag
,
Z.
, and
Kandil
,
H. A.
,
2018
, “
An Innovative Solution to the Overheating Problem of PV Panels
,”
Energy Convers. Manage.
,
157
, pp.
452
459
.
2.
Chaabane
,
M.
,
Charfi
,
W.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2013
, “
Performance Evaluation of Concentrating Solar Photovoltaic and Photovoltaic/Thermal Systems
,”
Sol. Energy
,
98
(
Part C
), pp.
315
321
.
3.
Chow
,
T. T.
,
Hand
,
J. W.
, and
Strachan
,
P. A.
,
2003
, “
Building-Integrated Photovoltaic and Thermal Applications in a Subtropical Hotel Building
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2035
2049
.
4.
Salem Ahmed
,
M.
,
Mohamed
,
A. S. A.
, and
Maghrabie
,
H. M.
,
2019
, “
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041010
.
5.
Azazul Haque
,
M.
,
Abdul Karim Miah
,
M.
,
Hossain
,
S.
, and
Rahman
,
M. H.
,
2022
, “
Passive Cooling Configurations for Enhancing the Photovoltaic Efficiency in Hot Climatic Conditions
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011009
.
6.
Tiwari
,
A. K.
,
Sontake
,
V. C.
, and
Kalamkar
,
V. R.
,
2020
, “
Enhancing the Performance of Solar Photovoltaic Water Pumping System by Water Cooling Over and Below the Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021005
.
7.
Sainthiya
,
H.
,
Beniwal
,
N. S.
, and
Garg
,
N.
,
2018
, “
Efficiency Improvement of a Photovoltaic Module Using Front Surface Cooling Method in Summer and Winter Conditions
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061009
.
8.
Bianco
,
V.
,
Scarpa
,
F.
, and
Tagliafico
,
L. A.
,
2018
, “
Numerical Analysis of the Al2O3-Water Nanofluid Forced Laminar Convection in an Asymmetric Heated Channel for Application in Flat Plate PV/T Collector
,”
Renew. Energy
,
116
, pp.
9
21
.
9.
Azari
,
A.
,
Kalbasi
,
M.
,
Derakhshandeh
,
M.
, and
Rahimi
,
M.
,
2013
, “
An Experimental Study on Nanofluids Convective Heat Transfer Through a Straight Tube Under Constant Heat Flux
,”
Chinese J. Chem. Eng.
,
21
(
10
), pp.
1082
1088
.
10.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2013
, “
The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor Inside a Horizontal Tube
,”
J. Nanomater.
,
2013
, pp.
1
12
.
11.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2009
, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanopart. Res.
,
11
(
5
), pp.
1129
1136
.
12.
Chopkar
,
I.
,
Sudarshan
,
S.
,
Das
,
P. K.
, and
Manna
,
I.
,
2008
, “
Effect of Particle Size on Thermal Conductivity of Nanofluid
,”
Metall Mater Trans A
,
39
(
7
), pp.
1535
1542
.
13.
Agarwal
,
D. K.
,
Vaidyanathan
,
A.
, and
Sunil Kumar
,
S.
,
2013
, “
Synthesis and Characterization of Kerosene-Alumina Nanofluids
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
275
284
.
14.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
15.
Yazdanifard
,
F.
,
Ameri
,
M.
, and
Ebrahimnia-Bajestan
,
E.
,
2017
, “
Performance of Nanofluid-Based Photovoltaic/Thermal Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
323
352
.
16.
Albojamal
,
A.
, and
Vafai
,
K.
,
2017
, “
Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport
,”
Int. J. Heat Mass Transfer
,
114
, pp.
225
237
.
17.
Kim
,
D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
,
Hong
,
D.
, and
Moon
,
S.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
.
18.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
19.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
20.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.
21.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
, pp.
789
793
.
22.
Mina
,
E. M.
,
Ghorbaniasl
,
G.
, and
Lacor
,
C.
,
2018
, “
Study of Nanoparticles Deposition in a Human Upper Airway Model Using a Dynamic Turbulent Schmidt Number
,”
Ain Shams Eng. J.
,
9
, pp.
2389
2398
. http/doi.org/10.1016/j.asej.2017.05.002
23.
Mirzaei
,
M.
,
Saffar-Avval
,
M.
, and
Naderan
,
H.
,
2014
, “
Heat Transfer Investigation of Laminar Developing Flow of Nano Fluids in a Microchannel Based on Eulerian—Lagrangian Approach
,”
Can. J. Chem. Eng.
,
92
(
6
), pp.
1139
1149
.
24.
ANSYS Fluent Theory Guide, Ansys Inc
., Release 16.1, April 2015, Chapter 16: Discrete Phase.
25.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Science Technolgy
,
16
(
4
), pp.
209
226
.
26.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
.
27.
Dubey
,
S.
,
Sarvaiya
,
J. N.
, and
Seshadri
,
B.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review
,”
Energy Procedia
,
33
, pp.
311
321
.
You do not currently have access to this content.