Abstract

Aerosol particles spread in the atmosphere play an important role in solar light scattering and thus co-determine the sky radiance/luminance pattern as well as diffuse irradiances/illuminances at the ground. The particular influence is given by their optical properties and by their distribution in the atmosphere. The dependence of the aerosol extinction coefficient on altitude is usually described by the exponential law, which results from the averaging of a large number of aerosol realizations. This is also frequently the case of simulating of the solar diffuse radiance/luminance distribution over the sky, when it is based on solving the radiative transfer problem. However, the aerosol vertical profile can sometimes be significantly different from the exponential one. Mainly in the urban environment, the aerosol is often well-mixed within the atmospheric boundary layer, so its volume extinction coefficient is almost constant there. Under specific conditions also the so-called elevated aerosol layer may occur. This work investigates how such different profiles affect the clear sky radiance pattern and consequently also the ground-based horizontal diffuse irradiance. The numerical simulations revealed that the discrepancies are negligible in practice. So, it appears that the aerosol vertical distribution does not play any important role in sky radiance calculations, and the standard exponential law is general enough to cover also various specific aerosol conditions.

References

1.
Hooper
,
F. C.
, and
Brunger
,
A. P.
,
1980
, “
A Model for the Angular Distribution of Sky Radiance
,”
ASME J. Sol. Energy Eng.
,
102
(
3
), pp.
196
202
.
2.
Hooper
,
F. C.
,
Brunger
,
A. P.
, and
Chan
,
C. S.
,
1987
, “
A Clear Sky Model of Diffuse Sky Radiance
,”
ASME J. Sol. Energy Eng.
,
109
(
1
), pp.
9
14
.
3.
Perez
,
R.
,
Seals
,
R.
, and
Michalsky
,
J.
,
1993
, “
All-weather Model for Sky Luminance Distribution—Preliminary Configuration and Validation
,”
Sol. Energy
,
50
(
3
), pp.
235
245
.
4.
Brunger
,
A. P.
, and
Hooper
,
F. C.
,
1993
, “
Anisotropic Sky Radiance Model Based on Narrow Field of View Measurements of Shortwave Radiance
,”
Sol. Energy
,
51
(
1
), pp.
53
64
.
5.
Igawa
,
N.
,
Koga
,
Y.
,
Matsuzawa
,
T.
, and
Nakamura
,
H.
,
2004
, “
Models of Sky Radiance Distribution and Sky Luminance Distribution
,”
Sol. Energy
,
77
(
2
), pp.
137
157
.
6.
Mayer
,
B.
, and
Killing
,
A.
,
2005
, “
Technical Note: The LibRadtran Software Package for Radiative Transfer Calculations—Description and Examples of Use
,”
Atmos. Chem. Phys.
,
5
(
7
), pp.
1855
1877
.
7.
Kocifaj
,
M.
,
2009
, “
Sky Luminance/radiance Model With Multiple Scattering Effect
,”
Sol. Energy
,
83
(
10
), pp.
1914
1922
.
8.
Kocifaj
,
M.
,
2012
, “
Angular Distribution of Scattered Radiation Under Broken Cloud Arrays: An Approximation of Successive Orders of Scattering
,”
Sol. Energy
,
86
(
12
), pp.
3575
3586
.
9.
Kocifaj
,
M.
,
2015
, “
Unified System of Radiance Patterns Under Arbitrary Sky Conditions
,”
Sol. Energy
,
115
, pp.
40
51
.
10.
Gueymard
,
Ch. A.
,
2001
, “
Parametrized Transmittance Model for Direct Beam and Circumsolar Spectral Irradiance
,”
Sol. Energy
,
71
(
5
), pp.
325
346
.
11.
Mattis
,
I.
,
Ansmann
,
A.
,
Müller
,
D.
,
Wandinger
,
U.
, and
Althausen
,
D.
,
2004
, “
Multiyear Aerosol Observations With Dual-Wavelength Raman Lidar in the Framework of EARLINET
,”
J. Geophys. Res.
,
109
(
D13
), p.
D13203
.
12.
Amiridis
,
V.
,
Balis
,
D. S.
,
Kazadzis
,
S.
,
Bais
,
A.
, and
Giannakaki
,
E.
,
2005
, “
Four-year Aerosol Observations with a Raman Lidar At Thessaloniki, Greece, in the Framework of European Aerosol Research Lidar Network (EARLINET)
,”
J. Geophys. Res.
,
110
(
D21
), p.
D21203
.
13.
De Tomasi
,
F.
,
Tafuro
,
A. M.
, and
Perrone
,
M. R.
,
2006
, “
Heigth and Seasonal Dependence of Aerosol Optical Properties Over Southeast Italy
,”
J. Geophys. Res.
,
111
(
D10
), p.
D10203
.
14.
Gueymard
,
Ch. A.
, and
Thevenard
,
D.
,
2009
, “
Monthly Average Clear-sky Broadband Irradiance Database for Worldwide Solar Heat Gain and Building Cooling Load Calculations
,”
Sol. Energy
,
83
(
11
), pp.
1998
2018
.
15.
Samoilova
,
S. V.
,
Balin
,
Yu. S.
,
Kokhanenko
,
G. P.
, and
Penner
,
I. E.
,
2010
, “
Investigation of the Vertical Distribution of Tropospheric Aerosol Layers From Multifrequency Laser Sensing Data. Part 2: The Vertical Distribution of Optical Aerosol Characteristics in the Visible Region
,”
Atmos. Ocean. Opt.
,
23
(
2
), pp.
95
105
.
16.
Gadhavi
,
H.
, and
Achuthan
,
J.
,
2006
, “
Airborne Lidar Study of the Vertical Distribution of Aerosols Over Hyderabad, An Urban Site in Central India, and Its Implication for Radiative Forcing Calculations
,”
Ann. Geophys.
,
24
(
10
), pp.
2461
2470
.
17.
Raut
,
J. C.
, and
Chazette
,
P.
,
2008
, “
Vertical Profiles of Urban Aerosol Complex Refractive Index in the Frame of ESQUIF Airborne Measurements
,”
Atmos. Chem. Phys.
,
8
(
4
), pp.
901
919
.
18.
Li
,
Ch.
,
Li
,
J.
,
Dubovik
,
O.
,
Zeng
,
Zh. Ch.
, and
Yung
,
Y. L.
,
2020
, “
Impact of Aerosol Vertical Distribution on Aerosol Optical Depth Retrieval From Passive Satellite Sensors
,”
Remote Sens.
,
12
(
9
), p.
1524
.
19.
Sasano
,
Y.
,
1996
, “
Tropospheric Aerosol Extinction Coefficient Profiles Derived From Scanning Lidar Measurements Over Tsukuba, Japan, From 1990 to 1993
,”
Appl. Opt.
,
35
(
24
), pp.
4941
4952
.
20.
He
,
Q.
,
Li
,
Ch.
,
Mao
,
J.
,
Lau
,
A. K. H.
, and
Chu
,
D. A.
,
2008
, “
Analysis of Aerosol Vertical Distribution and Variability in Hong Kong
,”
J. Geophys. Res.
,
113
(
D14
), p.
D14211
.
21.
Shettle
,
E. P.
, and
Fenn
,
R. W.
,
1976
, “
Models of Atmospheric Aerosols and Their Optical Properties
,” AGARD Conf. Proc. No. 183, Optical Propagation in the Atmosphere.
22.
Shettle
,
E. P.
, and
Fenn
,
R. W.
,
1979
,
Models for the Aerosols of the Lower Atmosphere and the Effects of the Humidity Variations on Their Optical Properties, Air Force Geophysics Laboratory, Hanscom
, MA, Tech. Rep. AFGL-TR-79-0214.
23.
McCartney
,
E. J.
,
1976
,
Optics of the Atmosphere: Scattering by Molecules and Particles
,
Wiley
,
New York
.
24.
Kahn
,
R. A.
, and
Gaitley
,
B. J.
,
2015
, “
An Analysis of Global Aerosol Type As Retrieved by MISR
,”
J. Geophys. Res. Atmos.
,
120
(
9
), pp.
4248
4281
.
25.
Laszlo
,
I.
, and
Liu
,
H.
,
2016
, “
EPS Aerosol Optical Depth (AOD) Algorithm Theoretical Basis Document
,”
NOAA NESDIS Center for Satellite Applications and Research
.
26.
Matthias
,
V.
,
Balis
,
D.
,
Bösenberg
,
J.
,
Eixmann
,
R.
,
Iarlori
,
M.
,
Komguem
,
L.
, and
Mattis
,
I.
,
2004
, “
Vertical Aerosol Distribution Over Europe: Statistical Analysis of Raman Lidar Data From 10 European Aerosol Research Lidar Network (EARLINET) Stations
,”
J. Geophys. Res.
,
109
(
D18
), p.
D18201
.
27.
Wandinger
,
U.
,
Mattis
,
I.
,
Tesche
,
M.
,
Ansmann
,
A.
,
Bösenberg
,
J.
,
Chaikovski
,
A.
, and
Freudenthaler
,
V.
,
2004
, “
Air Mass Modification Over Europe: EARLINET Aerosol Observations From Wales to Belarus
,”
J. Geophys. Res.
,
109
(
D24
), p.
D24205
.
28.
Sarangi
,
Ch.
,
Tripathi
,
S. N.
,
Mishra
,
A. K.
,
Goel
,
A.
, and
Welton
,
E. J.
,
2016
, “
Elevated Aerosol Layers and Their Radiative Impact Over Kanpur During Monsoon Onset Period
,”
J. Geophys. Res. Atmos.
,
121
(
13
), pp.
7936
7957
.
29.
Marchuk
,
G.
,
Mikhailov
,
G.
,
Nazaraliev
,
M.
,
Darbinjan
,
R.
,
Kargin
,
B.
, and
Elepov
,
B.
,
1980
,
The Monte Carlo Methods in Atmospheric Optics
,
Springer-Verlag
,
New York
.
30.
Marshak
,
A.
, and
Davis
,
A.
,
2005
,
3D Radiative Transfer in Cloudy Atmospheres
,
Springer-Verlag
,
Berlin
.
31.
Spada
,
F.
,
Krol
,
M. C.
, and
Stammes
,
P.
,
2006
, “
McSCIA: Application of the Equivalence Theorem in a Monte Carlo Radiative Transfer Model for Spherical Shell Atmospheres
,”
Atmos. Chem. Phys.
,
6
(
12
), pp.
4823
4842
.
32.
Hess
,
M.
,
Koepke
,
P.
, and
Schult
,
I.
,
1998
, “
Optical Properties of Aerosols and Clouds: The Software Package OPAC
,”
Bull. Am. Meteorol. Soc.
,
79
(
5
), pp.
831
844
.
33.
Devaux
,
C.
,
Vermeulen
,
A.
,
Deuzé
,
J. L.
,
Dubuisson
,
P.
,
Herman
,
M.
,
Santer
,
R.
, and
Verbrugghe
,
M.
,
1998
, “
Retrieval of Aerosol Single-Scattering Albedo From Ground-Based Measurements: Application to Observational Data
,”
J. Geophys. Res.
,
103
(
D8
), pp.
8753
8761
.
34.
Dubovik
,
O.
, and
King
,
M. D.
,
2000
, “
A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties From Sun and Sky Radiance Measurements
,”
J. Geophys. Res.
,
105
(
D16
), pp.
20673
20696
.
35.
Dubovik
,
O.
,
Holben
,
B.
,
Eck
,
T. F.
,
Smirnov
,
A.
,
Kaufman
,
Y. J.
,
King
,
M. D.
,
Tanré
,
D.
, and
Slutsker
,
I.
,
2002
, “
Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations
,”
J. Atmos. Sci.
,
59
(
3
), pp.
590
608
.
36.
Dutton
,
E. G.
,
Reddy
,
P.
,
Ryan
,
S.
, and
DeLuisi
,
J. J.
,
1994
, “
Features and Effects of Aerosol Optical Depth Observed At Mauna Loa, Hawaii: 1982-1992
,”
J. Geophys. Res.
,
99
(
D4
), pp.
8295
8306
.
37.
ASTM
,
2000
,
Standard Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables Standard E-490-00
, American Society for Testing and Materials, West Conshohocken, PA.
38.
Dubovik
,
O.
,
Smirnov
,
A.
,
Holben
,
B. N.
,
King
,
M. D.
,
Kaufman
,
Y. J.
,
Eck
,
T. F.
, and
Slutsker
,
I.
,
2000
, “
Accuracy Assessments of Aerosol Optical Properties Retrieved From Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements
,”
J. Geophys. Res.
,
105
, pp.
9791
9806
.
You do not currently have access to this content.