Abstract

One of the ways to improve the performance of solar air heaters (SAHs) is to use jet impingement on the absorber plate to cause turbulence mixing of air in contact with the plate and thereby augment the heat transfer coefficient. Although the jet impingement is a prospective way of improving the SAH performance, comparison of performance between jet designs is not performed so far. The objective of this work is to compare the thermo-hydraulic performance of a SAH with jet impingement through conical protruding jets and circular jets using finite element method based comsol multiphysics software. The simulation studies were conducted for solar radiation in the range 500–1000 W/m2 and mass flowrate in the range 0.01–0.028 kg/s. The flow physics of the jet impingement process is investigated to understand the heat transfer and fluid flow behavior of the SAH with the chosen jet designs thereby obtain their performance insights. The outlet hot air temperature from the heater and its thermal efficiency are compared for different mass flowrates and solar radiations. Also the temperature distributions in the jet plate with the jet configurations are captured and their heat transfer characteristics compared with understand the thermo-fluidic behavior of the SAH. The results demonstrate improved performance of the novel conical protruded jet design that enhances the thermal efficiency up to 78.52%, which is an increase of 13.53% compared with the circular jet design. More elongated streamlines and higher turbulent kinetic energy with increased mass flowrate leading to a wide jet affected area inside the duct are the main reasons of its improved performance.

References

1.
Bansal
,
N. K.
,
1999
, “
Solar Air Heater Applications in India
,”
Renewable Energy
,
16
(
1–4
), pp.
618
623
.
2.
Wazed
,
M. A.
,
Nukman
,
Y.
, and
Islam
,
M. T.
,
2010
, “
Design and Fabrication of a Cost Effective Solar Air Heater for Bangladesh
,”
Appl. Energy
,
87
(
10
), pp.
3030
3036
.
3.
Farshchimonfared
,
M.
,
Bilbao
,
J.
, and
Sproul
,
A.
,
2015
, “
Channel Depth, Air Mass Flow Rate and Air Distribution Duct Diameter Optimization of Photovoltaic Thermal (PV/T) Air Collectors Linked to Residential Buildings
,”
Renewable Energy
,
76
, pp.
27
35
.
4.
Ghritlahre
,
H. K.
, and
Prasad
,
R. K.
,
2018
, “
Investigation of Thermal Performance of Unidirectional Flow Porous Bed Solar Air Heater Using MLP, GRNN, and RBF Models of ANN Technique
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
226
235
.
5.
Brideau
,
S. A.
, and
Collins
,
M. R.
,
2012
, “
Experimental Model Validation of a Hybrid PV/Thermal Air Based Collector With Impinging Jets
,”
Energy Procedia
,
30
, pp.
44
54
.
6.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
7.
Choudhury
,
C.
, and
Garg
,
H. P.
,
1991
, “
Evaluation of a Jet Plate Solar Air Heater
,”
Sol. Energy
,
46
(
4
), pp.
199
209
.
8.
Belusko
,
M.
,
Saman
,
W.
, and
Bruno
,
F.
,
2008
, “
Performance of Jet Impingement in Unglazed Air Collectors
,”
Sol. Energy
,
82
(
5
), pp.
389
398
.
9.
Chauhan
,
R.
, and
Thakur
,
N. S.
,
2013
, “
Heat Transfer and Friction Factor Correlations for Impinging Jet Solar Air Heater
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
760
767
.
10.
Chauhan
,
R.
, and
Thakur
,
N. S.
,
2014
, “
Investigation of the Thermohydraulic Performance of Impinging Jet Solar Air Heater
,”
Energy
,
68
, pp.
255
261
.
11.
Chauhan
,
R.
,
Thakur
,
N. S.
,
Singh
,
T.
, and
Sethi
,
M.
,
2018
, “
Exergy Based Modeling and Optimization of Solar Thermal Collector Provided With Impinging Air Jets
,”
J. King Saud Univ. Eng. Sci.
,
30
(
4
), pp.
355
362
.
12.
Brideau
,
S. A.
, and
Collins
,
M. R.
,
2014
, “
Development and Validation of a Hybrid PV/Thermal Air Based Collector Model With Impinging Jets
,”
Sol. Energy
,
102
, pp.
234
246
.
13.
Chauhan
,
R.
,
Singh
,
T.
,
Thakur
,
N. S.
, and
Patnaik
,
A.
,
2016
, “
Optimization of Parameters in Solar Thermal Collector Provided With Impinging Air Jets Based Upon Preference Selection Index Method
,”
Renewable Energy
,
99
, pp.
118
126
.
14.
Chauhan
,
R.
,
Singh
,
T.
,
Kumar
,
N.
,
Patnaik
,
A.
, and
Thakur
,
N. S.
,
2017
, “
Experimental Investigation and Optimization of Impinging Jet Solar Thermal Collector by Taguchi Method
,”
Appl. Therm. Eng.
,
116
, pp.
100
109
.
15.
Aboghrara
,
A. M.
,
Baharudin
,
B. T. H. T.
,
Alghoul
,
M. A.
,
Adam
,
N. M.
,
Hairuddin
,
A. A.
, and
Hasan
,
H. A.
,
2017
, “
Performance Analysis of Solar Air Heater With Jet Impingement on Corrugated Absorber Plate
,”
Case Stud. Therm. Eng.
,
10
, pp.
111
120
.
16.
Goel
,
A. K.
, and
Singh
,
S. N.
,
2019
, “
Performance Studies of a Jet Plate Solar Air Heater With Longitudinal Fins
,”
Int. J. Ambient Energy
,
40
(
2
), pp.
119
127
.
17.
Rajaseenivasan
,
T.
,
Ravi Prasanth
,
S.
,
Salamon Antony
,
M.
, and
Srithar
,
K.
,
2017
, “
Experimental Investigation on the Performance of an Impinging Jet Solar Air Heater
,”
Alexandria Eng. J.
,
56
(
1
), pp.
63
69
.
18.
Nayak
,
R. K.
, and
Singh
,
S. N.
,
2016
, “
Effect of Geometrical Aspects on the Performance of Jet Plate Solar Air Heater
,”
Sol. Energy
,
137
, pp.
434
440
.
19.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
, and
Somasundaram
,
D.
,
2018
, “
Analytical Investigation of Solar Air Heater With Jet Impingement Using Energy and Exergy Analysis
,”
Sol. Energy
,
161
, pp.
25
37
.
20.
Nadda
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Developing Heat Transfer and Friction Loss in an Impingement Jets Solar Air Heater With Multiple Arc Protrusion Obstacles
,”
Sol. Energy
,
158
, pp.
117
131
.
21.
Nadda
,
R.
,
Kumar
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2018
, “
Optimization of Single Arc Protrusion Ribs Parameters in Solar Air Heater With Impinging Air Jets Based Upon PSI Approach
,”
Therm. Sci. Eng. Prog.
,
7
, pp.
146
154
.
22.
Gao
,
W.
,
2007
, “
Analytical and Experimental Studies on the Thermal Performance of Cross-Corrugated and Flat-Plate Solar Air Heaters
,”
Appl. Energy
,
84
(
4
), pp.
425
441
.
23.
Mc Adams
,
W. H.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw-Hill
,
New York
.
24.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
25.
COMSOL Multiphysics Modeling Software 5.2, “
CFD Module Users Guide
,” pp.
1
572
, 2015.
26.
Bergman
,
T. L.
,
Incropera
,
F. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
27.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
UK
.
28.
Dubey
,
S.
,
Sandhu
,
G. S.
, and
Tiwari
,
G. N.
,
2009
, “
Analytical Expression for Electrical Efficiency of PV/T Hybrid Air Collector
,”
Appl. Energy
,
86
(
5
), pp.
697
705
.
29.
Kays
,
W. H.
, and
Perkin
,
H.
,
1990
,
Forced Convection Internal Flow in Ducts
,
McGraw-Hill
,
New York
.
30.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
,
Turbulent and Transition Convective Heat Transfer in Ducts
,
Wiley
,
New York
.
31.
Touloukian
,
Y. S.
,
Liley
,
P. E.
,
Hestermans
,
P.
, and
Saxena
,
S. C.
,
1970
,
Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Vol. 11: Viscosity
,
IFI/Plenun
,
New York
.
32.
Sivarathinamoorthy
,
H.
, and
Sureshkannan
,
G.
,
2021
, “
The Influence of Internal Heat Storage Material and Longitudinal Fins on a Double-Pass Solar Air Heater Performance
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011004
.
33.
Chhaparwal
,
G. K.
,
Dayal
,
R.
,
Goyal
,
R.
, and
Srivastava
,
A.
,
2021
, “
Geometrical Optimization of a Smooth Solar Air Heater Duct
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011008
.
34.
Ahmad
,
I.
,
Khan
,
N. H.
,
Hassan
,
M. A.
, and
Paswan
,
M. K.
,
2020
, “
Three-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism-Shaped Rib Roughness
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051001
.
You do not currently have access to this content.