Abstract

Satellite-based solar power data is becoming more and more important because of its continuous temporal and spatial availability. However, its reliability can be enhanced through quality control and calibration against ground-based measurement data. Here, a holistic methodology is employed for the adaptation of satellite-based data for estimating solar energy. For the purpose, high-quality ground-based measurement data and satellite-based datasets are assessed across 12 sites in three small islands located in the Indian Ocean. Initially, both datasets go through a rigorous quality control process. A quantitative analysis of irradiance and insolation data is then conducted. Eventually, site adaptation of satellite-based data is performed using bias removal technique and statistical analysis of datasets. A set of seven statistical performance indicators is used to support the assessment. Analysis of datasets shows that adaptation of peak values should be performed separately. Results showed that despite the small surface areas of the islands studied, a spatial variation of insolation can be depicted. A temporal variation of insolation is also noted with a peak in the summer and low insolation levels in winter. Peak irradiance values tend to exceed solar constant for all sites. Variations of peak irradiance can only be noticed in ground-based measurement data. While insolation levels are comparable in the summer season for all the sites, insolation levels in the winter season are higher in the sites with lower latitudes. Calibration factors for peak irradiance, monthly and annual average irradiance as well as yearly insolation are presented.

References

1.
Moradi
,
I.
,
2009
, “
Quality Control of Global Solar Radiation Using Sunshine Duration Hours
,”
Energy
,
34
(
1
), pp.
1
6
. 10.1016/j.energy.2008.09.006
2.
Moreno-Tejera
,
S.
,
Ramírez-Santigosa
,
L.
, and
Silva-Pérez
,
M. A.
,
2015
, “
A Proposed Methodology for Quick Assessment of Timestamp and Quality Control Results of Solar Radiation Data
,”
Renew. Energy
,
78
, pp.
531
537
. 10.1016/j.renene.2015.01.031
3.
Urraca
,
R.
,
Gracia-Amillo
,
A. M.
,
Huld
,
T.
,
Martinez-de-Pison
,
F. J.
,
Trentmann
,
J.
,
Lindfors
,
A. V.
,
Riihelä
,
A.
, and
Sanz-Garcia
,
A.
,
2017
, “
Quality Control of Global Solar Radiation Data With Satellite-Based Products
,”
Sol. Energy
,
158
, pp.
49
62
. 10.1016/j.solener.2017.09.032
4.
REN21
,
2018
, “Renewables 2018 Global Status Report,” Paris: REN 21 Secretariat.
5.
Suri
,
M.
,
Cebecauer
,
T.
,
Meyer
,
A.
, and
Van Niekerk
,
J.
,
2015
, “
Accuracy-Enhanced Solar Resource Maps of South Africa
,”
Third Southern African Solar Energy Conference.
6.
Polo
,
J.
,
Wilbert
,
S.
,
Ruiz-Arias
,
J. A.
,
Meyer
,
R.
,
Gueymard
,
C. A.
,
Súri
,
M.
,
Martín
,
L.
,
Mieslinger
,
T.
,
Blanc
,
P.
,
Grant
,
I.
,
Boland
,
J.
,
Ineichen
,
P.
,
Remund
,
J.
,
Escobar
,
R.
,
Troccoli
,
A.
,
Sengupta
,
M.
,
Nielsen
,
K. P.
,
Renne
,
D.
,
Geuder
,
N.
, and
Cebecauer
,
T.
,
2016
, “
Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets
,”
Sol. Energy
,
132
, pp.
25
37
. 10.1016/j.solener.2016.03.001
7.
Gautier
,
C.
,
Diak
,
A.
, and
Masse
,
S.
,
1980
, “
A Simple Physical Model to Estimate Incident Solar Radiation at the Surface From GOES Satellite Data
,”
J. Appl. Meteorol.
,
19
(
8
), pp.
1005
1012
. 10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
8.
Hammer
,
A.
,
Heinemann
,
D.
,
Hoyer
,
C.
,
Kuhlemann
,
R.
,
Lorenz
,
E.
,
Müller
,
R.
, and
Beyer
,
H.
,
2003
, “
Solar Energy Assessment Using Remote Sensing Technologies
,”
Remote Sens. Environ.
,
86
(
3
), pp.
423
432
. 10.1016/S0034-4257(03)00083-X
9.
Perez
,
R.
,
Cebecauer
,
T.
, and
Súri
,
M.
,
2013
, “Semi-Empirical Satellite Models,”
Solar Energy Forecasting and Resource Assessment
,
J
Kleissl
, ed.,
Academic Press
,
Boston, MA
, pp.
21
48
.
10.
Rigollier
,
C.
,
Lefèvre
,
M.
, and
Wald
,
L.
,
2004
, “
The Method Heliosat-2 for Deriving Shortwave Solar Radiation From Satellite Images
,”
Sol. Energy
,
77
(
2
), pp.
159
169
. 10.1016/j.solener.2004.04.017
11.
Gueymard
,
C. A.
, and
Ruiz-Arias
,
J.
,
2014
, “
Performance of Separation Models to Predict Direct Irradiance at High Frequency: Validation Over Arid Areas
,”
EuroSun 2014 ISES Conference Proceedings
,
Aix-les-Bains, France
,
Sept. 16–19
.
12.
Ernst
,
M.
,
Thomson
,
A.
,
Haedrich
,
I.
, and
Blakers
,
A.
,
2016
, “
Comparison of Ground-Based and Satellite-Based Irradiance Data for Photovoltaic Yield Estimation
,”
Energy Proc.
,
92
, pp.
546
553
. 10.1016/j.egypro.2016.07.139
13.
Vernay
,
C.
,
Pitaval
,
S.
, and
Blanc
,
P.
,
2014
, “
Review of Satellite-Based Surface Solar Irradiation Databases for the Engineering, the Financing and the Operating of Photovoltaic Systems
,”
Energy Proc.
,
57
, pp.
1383
1391
. 10.1016/j.egypro.2014.10.129
14.
Cebecauer
,
T.
,
Perez
,
R.
, and
Suri
,
M.
,
2011
, “
Comparing Performance of SolarGIS and SUNY Satellite Models Using Monthly and Daily Aerosol Data
,”
ISES Solar World Congress 2011 Proceedings
,
Kassel, Germany
,
Aug. 28- Sept. 2
.
15.
Gueymard
,
C. A.
, and
Thevenard
,
D.
,
2009
, “
Monthly Average Clear-Sky Broadband Irradiance Database for Worldwide Solar Heat Gain and Building Cooling Load Calculations
,”
Sol. Energy
,
83
(
11
), pp.
1998
2018
. 10.1016/j.solener.2009.07.011
16.
McArthur
,
L. J. B.
,
2005
, “
World Climate Research Programme—Baseline Surface Radiation Network (BSRN)—Operations Manual Version 2.1.
,”
Experimental Studies Division, Atmospheric Environment Service
,
Downsview, Ontario, Canada
,
2005
.
17.
Sengupta
,
M.
,
Habte
,
A.
,
Kurtz
,
S.
,
Dobos
,
A.
,
Wilbert
,
S.
,
Lorenz
,
E.
,
Stoffel
,
T.
,
Renné
,
D.
,
Gueymard
,
C. A.
,
Myers
,
D.
,
Wilcox
,
S.
,
Blanc
,
P.
, and
Perez
,
R.
,
2015
, “Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications,” [Research Report] Technical Report NREL/TP-5D00-63112, National Renewable Energy Laboratory, 236p. hal-01184753.
18.
Journée
,
M.
, and
Bertrand
,
C.
,
2011
, “
Quality Control of Solar Radiation Data Within the RMIB Solar Measurements Network
,”
Sol. Energy
,
85
(
1
), pp.
72
86
. 10.1016/j.solener.2010.10.021
19.
Tang
,
W.
,
Yang
,
K.
,
He
,
J.
, and
Qin
,
J.
,
2010
, “
Quality Control and Estimation of Global Solar Radiation in China
,”
Sol. Energy
,
84
(
1
), pp.
466
475
. 10.1016/j.solener.2010.01.006
20.
Geiger
,
M.
,
Diabaté
,
L.
,
Ménard
,
L.
, and
Wald
,
L.
,
2002
, “
A Web Service for Controlling the Quality of Measurements of Global Solar Irradiation
,”
Sol. Energy
,
73
(
6
), pp.
475
480
. 10.1016/S0038-092X(02)00121-4
21.
Mirás-Avalos
,
J. M.
,
Rodríguez-Gómez
,
B. A.
,
Meizoso-López
,
M. C.
,
Sande-Fouz
,
P.
,
González-García
,
M. Á.
, and
Paz-González
,
A.
,
2012
, “
Data Quality Assessment and Monthly Stability of Ground Solar Radiation in Galicia (NW Spain)
,”
Sol. Energy
,
86
(
12
), pp.
3499
3511
. 10.1016/j.solener.2011.09.017
22.
Younes
,
S.
,
Claywell
,
R.
, and
Muneer
,
T.
,
2005
, “
Quality Control of Solar Radiation Data: Present Status and Proposed new Approaches
,”
Energy
,
30
(
9
), pp.
1533
1549
. 10.1016/j.energy.2004.04.031
23.
Muneer
,
T.
, and
Fairooz
,
F.
,
2002
, “
Quality Control of Solar Radiation and Sunshine Measurements—Lessons Learnt From Processing Worldwide Databases
,”
Buil. Serv. Eng. Res. Technol.
,
23
(
3
), pp.
151
166
. 10.1191/0143624402bt038oa
24.
Rahim
,
R.
,
Baharuddin
, and
Mulyadi
,
R.
,
2004
, “
Classification of Daylight and Radiation Data Into Three sky Conditions by Cloud Ratio and Sunshine Duration
,”
Energ. Build.
,
36
(
7
), pp.
660
666
. 10.1016/j.enbuild.2004.01.012
25.
Hay
,
J. E.
,
1993
, “
Solar Radiation Data Validation and Quality Control
,”
Renew. Energy
,
3
(
4/5
), pp.
349
355
. 10.1016/0960-1481(93)90101-L
26.
Ineichen
,
P.
,
2006
, “
Comparison of Eight Clear sky Broadband Models Against 16 Independent Data Banks
,”
Sol. Energy
,
80
(
4
), pp.
468
478
. 10.1016/j.solener.2005.04.018
27.
Molineaux
,
B.
, and
Ineichen
,
P.
,
1994
, “Automatic Quality Control of Daylight Measurements: Software for IDMP Stations,” Technical Report: Guide to Recommended Practice of Daylight Measurement, Commission internationale de l′éclairage, Vienna, pp.
34
42
.
28.
Kumar
,
A.
,
Gomathinayagam
,
S.
,
Giridhar
,
G.
,
Mitra
,
I.
,
Vashistha
,
R.
,
Meyer
,
R.
,
Schwandt
,
M.
, and
Chhatbar
,
K.
,
2014
, “
Field Experiences with the Operation of Solar Radiation Resource Assessment Stations in India
,”
Energy Proc.
,
49
, pp.
2351
2361
. 10.1016/j.egypro.2014.03.249
29.
Hoyer-Klick
,
C.
,
Beyer
,
H. G.
,
Dumortier
,
D.
,
Schroedter-Homscheidt
,
M.
,
Wald
,
L.
,
Martinoli
,
M.
,
Schilings
,
C.
,
Gschwind
,
B.
,
Menard
,
L.
,
Gaboardi
,
E.
,
Ramirez-Santigosa
,
L.
,
Polo
,
J.
,
Cebecauer
,
T.
,
Huld
,
T.
,
Suri
,
M.
,
Blas
,
M. D.
,
Lorenz
,
E.
,
Pfatischer
,
R.
,
Remund
,
J.
,
Ineichen
,
P.
,
Tsvetkov
,
A.
, and
Hofierka
,
J.
,
2008
, “
Management and Exploitation of Solar Resource Knowledge
,”
EUROSUN 2008, 1st International Conference on Solar Heating, Cooling and Buildings Proceedings
,
Lisbon, Portugal
,
Oct. 2008
, pp.
7
10
, hal-00468443.
30.
NREL
,
1993
, “Users Manual for SERI QC Software—Assessing the Quality of Solar Radiation Data,” Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, http://www.nrel.gov/docs/legosti/old/5608.pdf
31.
Long
,
C. N.
, and
Shi
,
Y.
,
2008
, “
An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements
,”
Open Atmospheric Sci. J.
,
2
(
1
), pp.
23
27
. 10.2174/1874282300802010023
32.
WMO
,
2008
, “WMO Guide to Meteorological Instruments and Methods of Observation: WMO No. 8,” 7th ed., https://www.weather.gov/media/epz/mesonet/CWOP-WMO8.pdf
33.
WMO
,
2012
, “WMO Guide to Meteorological Instruments and Methods of Observation: WMO No. 8,” http://radiometrics.com/data/uploads/2014/07/wmo_8_en-2012.pdf
34.
Ohmura
,
A.
,
Dutton
,
E. G.
,
Forgan
,
B.
,
Fröhlich
,
C.
,
Gilgen
,
H.
,
Hegner
,
H.
,
Heimo
,
A.
,
König-Langlo
,
G.
,
McArthur
,
B.
,
Müller
,
G.
,
Philipona
,
R.
,
Pinker
,
R.
,
Whitlock
,
C. H.
,
Dehne
,
K.
, and
Wild
,
M.
,
1998
, “
Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research
,”
B. Am. Meteorol. Soc.
,
79
(
10
), pp.
2115
2136
. 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2
35.
Laiti
,
L.
,
Andreis
,
D.
,
Zottele
,
F.
,
Giovannini
,
L.
,
Panziera
,
L.
,
Toller
,
G.
, and
Zardi
,
D.
,
2014
, “
A Solar Atlas for the Trentino Region in the Alps: Quality Control of Surface Radiation Data
,”
Energy Proc
,
59
, pp.
336
343
. 10.1016/j.egypro.2014.10.386
36.
Pashiardis
,
S.
, and
Kalogirou
,
S. A.
,
2016
, “
Quality Control of Solar Shortwave and Terrestrial Longwave Radiation for Surface Radiation Measurements at two Sites in Cyprus
,”
Renew. Energy
,
96
, pp.
1015
1033
. 10.1016/j.renene.2016.04.001
37.
Long
,
C. N.
, and
Dutton
,
E. G.
,
2002
, “BSRN Global Network Recommended QC Tests,” V2.0. BSRN Technical Report, https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf
38.
Rigollier
,
C.
,
Bauer
,
O.
, and
Wald
,
L.
,
2000
, “
On the Clear sky Model of the ESRA—European Solar Radiation Atlas With Respect to the Heliosat Method
,”
Sol. Energy
,
68
(
1
), pp.
33
48
. 10.1016/S0038-092X(99)00055-9
39.
Page
,
J. K.
,
Albuisson
,
M.
, and
Wald
,
L.
,
2001
, “
The European Solar Radiation Atlas: A Valuable Digital Tool
,”
Sol. Energy
,
71
(
1
), pp.
81
83
. 10.1016/S0038-092X(00)00157-2
40.
Bird
,
R. E.
, and
Hulstrom
,
R. L.
,
1980
, “Direct Insolation Models,” Solar Energy Research Institute, SERI/TR-335-344.
41.
Bird
,
R. E.
, and
Hulstrom
,
R. L.
,
1981
, “A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces,” Solar Energy Research Institute, SERI/TR-642-761.
42.
Ineichen
,
P.
,
2013
, “Solar Radiation Resource in Geneva: Measurements, Modeling, Data Quality Control, Format and Accessibility.”
43.
Mauritius Meteorological Services
, “Monthly Bulletin of Climatological Summaries,” http://metservice.intnet.mu/climate-services/climate-info-and-data.php, Accessed August 2019.
44.
Mauritius Meteorological Services
, “Climate of Mauritius,” http://metservice.intnet.mu/climate-services/climate-of-mauritius.php, Accessed August 15, 2016,
45.
Mauritius Meteorological Services
, http://metservice.intnet.mu/climate-services/climate-of-rodrigues-and-islands.php, Accessed December 15, 2019,
46.
Outer Islands Development Corporation
, “Agalega,” http://oidc.govmu.org/English/About%20Agalega/Pages/default.aspx, Accessed December 15, 2019,
47.
Ramgolam
,
Y. K.
, and
Chiniah
,
A.
,
2019
, “
Innovative Architecture for Dynamic Solar Data Acquisition and Processing: A Case for Mauritius and Outer Islands, 2nd International Conference on Next Generation Computing Applications
,”
IEEE NextComp2019
,
The Ravenala Attitude, Balaclava, Mauritius
,
Sept. 19–20
.
48.
Espinar
,
B.
,
Blanc
,
P.
,
Wald
,
L.
,
Gschwind
,
B.
,
Ménard
,
L.
,
Wey
,
E.
,
Thomas
,
C.
, and
Saboret
,
L.
,
2012
, “
HelioClim-3: a Near-Real Time and Long-Term Surface Solar Irradiance Database
,”
Workshop on Remote Sensing Measurements for Renewable Energy
,
Risoe, Denmark
,
May 2012
, hal-00741564f.
49.
Solar Radiation Data
, http://www.soda-pro.com/help/helioclim/helioclim-3-overview, Accessed January 11, 2020,
50.
Lefèvre
,
M.
,
Albuisson
,
M.
, and
Wald
,
L.
,
2004
, “Description of the Software Heliosat-2 for the Conversion of Images Acquired by Meteosat Satellites in the Visible Band into Maps of Solar Radiation Available at Ground Level,” hal-00867218.
51.
Espinar
,
B.
,
Blanc
,
P.
,
Wald
,
L.
,
Hoyer-Klick
,
C.
,
Schroedter-Homscheidt
,
M.
, and
Wanderer
,
T.
,
2012
, “
On Quality Control Procedures for Solar Radiation and Meteorological Measures, From Subhourly to Monthly Average Time Periods
,”
EGU General Assembly 2012
,
Vienne, Austria
.
Apr 2012
, hal-00691350.
52.
Ameen
,
B.
,
Balzter
,
H.
, and
Jarvis
,
C.
,
2018
, “
Quality Control of Global Horizontal Irradiance Estimates Through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures
,”
Climate
,
6
(
3
), p.
69
. 10.3390/cli6030069
53.
Bakirci
,
K.
,
2017
, “
Prediction of Global Solar Radiation and Comparison With Satellite Data
,”
J. Atmos. Sol. Terr. Phys.
,
152
, pp.
41
49
. 10.1016/j.jastp.2016.12.002
54.
Darhmaoui
,
H.
, and
Lahjouji
,
D.
,
2013
, “
Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region
,”
Energy Proc.
,
42
, pp.
426
435
. 10.1016/j.egypro.2013.11.043
55.
Ramgolam
,
Y. K.
, and
Soyjaudah
,
K. M. S.
,
2015
, “
Unveiling the Solar Resource Potential for Photovoltaic Applications in Mauritius
,”
Renew. Energy
,
77
, pp.
94
100
. 10.1016/j.renene.2014.12.011
56.
Zajaczkowski
,
J.
,
Wong
,
K.
, and
Carter
,
J.
,
2013
, “
Improved Historical Solar Radiation Gridded Data for Australia
,”
Environ. Modell. Software
,
49
, pp.
64
77
. 10.1016/j.envsoft.2013.06.013
57.
Aguiar
,
L. M.
,
Polo
,
J.
,
Vindel
,
J. M.
, and
Oliver
,
A.
,
2019
, “
Analysis of Satellite Derived Solar Irradiance in Islands With Site Adaptation Techniques for Improving the Uncertainty
,”
Renew. Energy
,
135
, pp.
98
107
.
58.
Babar
,
B.
,
Graversen
,
R.
, and
Boström
,
T.
,
2019
, “
Solar Radiation Estimation at High Latitudes: Assessment of the CMSAF Databases, ASR and ERA5
,”
Sol. Energy
,
182
, pp.
397
411
.
59.
Carmona
,
F.
,
Orte
,
P. F.
,
Rivas
,
R.
,
Wolfram
,
E.
, and
Kruse
,
E.
,
2018
, “
Development and Analysis of a New Solar Radiation Atlas for Argentina From Ground-Based Measurements and CERES_SYN1deg Data
,”
Egypt. J. Remote Sens. Space Sci.
,
21
, pp.
211
217
.
60.
Cebecauer
,
T.
, and
Suri
,
M.
,
2016
, “
Site-Adaptation of Satellite-Based DNI and GHI Time Series: Overview and SolarGIS Approach
,”
AIP Conf. Proc.
,
1734
, p.
150002
. 10.1063/1.4949234
61.
Janjai
,
S.
,
Pankaew
,
P.
,
Laksanaboonsong
,
J.
, and
Kitichantaropas
,
P.
,
2011
, “
Estimation of Solar Radiation Over Cambodia From Long-Term Satellite Data
,”
Renew. Energy
,
36
(
4
), pp.
1214
1220
. 10.1016/j.renene.2010.09.023
62.
Chelbi
,
M.
,
Gagnon
,
Y.
, and
Waewsak
,
J.
,
2015
, “
Solar Radiation Mapping Using Sunshine Duration-Based Models and Interpolation Techniques: Application to Tunisia
,”
Energ. Convers. Manage.
,
101
, pp.
203
215
. 10.1016/j.enconman.2015.04.052
63.
Liu
,
X.
,
Mei
,
X.
,
Li
,
Y.
,
Porter
,
J. R.
,
Wang
,
Q.
, and
Zhang
,
Y.
,
2010
, “
Choice of the Ångström–Prescott Coefficients: Are Time-Dependent Ones Better Than Fixed Ones in Modeling Global Solar Irradiance?
,”
Energ. Convers. Manage.
,
51
(
12
), pp.
2565
2574
. 10.1016/j.enconman.2010.05.020
64.
Paulescu
,
M.
,
Stefu
,
N.
,
Calinoiu
,
D.
,
Paulescu
,
E.
,
Pop
,
N.
,
Boata
,
R.
, and
Mares
,
O.
,
2016
, “
Ångström–Prescott Equation: Physical Basis, Empirical Models and Sensitivity Analysis
,”
Renew. Sust. Energ. Rev.
,
62
, pp.
495
506
. 10.1016/j.rser.2016.04.012
65.
Zhao
,
N.
,
Zeng
,
X.
, and
Han
,
S.
,
2013
, “
Solar Radiation Estimation Using Sunshine Hour and air Pollution Index in China
,”
Energ. Convers. Manage.
,
76
, pp.
846
851
. 10.1016/j.enconman.2013.08.037
66.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Elaziz
,
M. A.
,
Kabeel
,
A. E.
,
Guillan
,
W.
, and
Haiou
,
Z.
,
2019
, “
Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review
,”
Sol. Energy
,
180
, pp.
622
639
. 10.1016/j.solener.2019.01.037
67.
Ramgolam
,
Y. K.
, and
Soyjaudah
,
K. M. S.
,
2018
, “
Modelling the Impact of Spectral Irradiance and Average Photon Energy on Photocurrent of Solar Modules
,”
Sol. Energy
,
173
, pp.
1058
1064
. 10.1016/j.solener.2018.08.055
68.
Schade
,
N. H.
,
Macke
,
A.
,
Sandman
,
H.
, and
Stick
,
C.
,
2007
, “
Enhanced Solar Global Irradiance During Cloudy sky Conditions
,”
Meteorol. Z.
,
16
(
3
), pp.
295
303
. 10.1127/0941-2948/2007/0206
69.
Luoma
,
J.
,
Kleissl
,
J.
, and
Murray
,
K.
,
2012
, “
Optimal Inverter Sizing Considering Cloud Enhancement
,”
Sol. Energy
,
86
(
1
), pp.
421
429
. 10.1016/j.solener.2011.10.012
70.
Tapakis
,
R.
, and
Charalambides
,
A. G.
,
2014
, “
Enhanced Values of Global Irradiance due to the Presence of Clouds in Eastern Mediterranean
,”
Renew. Energy
,
62
, pp.
459
467
. 10.1016/j.renene.2013.08.001
71.
Inman
,
R. H.
,
Chu
,
Y.
, and
Coimbra
,
C. F. M.
,
2016
, “
Cloud Enhancement of Global Horizontal Irradiance in California and Hawaii
,”
Sol. Energy
,
130
, pp.
128
138
. 10.1016/j.solener.2016.02.011
72.
Geuymard
,
C. A.
,
2017
, “
Cloud and Albedo Enhancement Impacts on Solar Irradiance Using High-Frequency Measurements From Thermopile and Photodiode Radiometers. Part 1: Impacts on Global Horizontal Irradiance
,”
Sol. Energy
,
153
, pp.
755
765
. 10.1016/j.solener.2017.05.004
73.
Bishop
,
J. K.
, and
Rossow
,
W. B.
,
1991
, “
Spatial and Temporal Variability of Global Surface Solar Irradiance
,”
J. Geophys. Res.
,
96
(
C9
), pp.
16,839
16,858
. 10.1029/91JC01754
74.
Zhou
,
Y.
,
Meng
,
X.
,
Belle
,
J. H.
,
Zhang
,
H.
,
Kennedy
,
C.
,
Al-Hamdan
,
M. Z.
,
Wang
,
J.
, and
Liu
,
Y.
,
2019
, “
Compilation and Spatio-Temporal Analysis of Publicly Available Total Solar and UV Irradiance Data in the Contiguous United States
,”
Environ. Pollut.
,
253
, pp.
130
140
. 10.1016/j.envpol.2019.06.074
75.
Tahir
,
Z. R.
, and
Asim
,
M.
,
2018
, “
Surface Measured Solar Radiation Data and Solar Energy Resource Assessment of Pakistan: A Review
,”
Renew. Sust. Energ. Rev.
,
81
, pp.
2839
2861
. 10.1016/j.rser.2017.06.090
76.
Boiley
,
A.
, and
Wald
,
L.
,
2015
, “
Comparison Between Meteorological Re-Analyses From ERA-Interim and MERRA and Measurements of Daily Solar Irradiation at Surface
,”
Renew. Energy
,
75
, pp.
135
143
. 10.1016/j.renene.2014.09.042
77.
Schumann
,
K.
,
Beyer
,
H. G.
,
Chhatbar
,
K.
, and
Meyer
,
R.
,
2011
, “
Improving Satellite-Derived Solar Resource Analysis with Parallel Ground-Based Measurements
,”
ISES Solar World Congress.
78.
Gueymard
,
C. A.
,
2011
, “
Uncertainties in Modeled Direct Irradiance Around the Sahara as Affected by Aerosols: Are Current Datasets of Bankable Quality?
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031024
. 10.1115/1.4004386
79.
Eissa
,
Y.
,
Chiesa
,
M.
, and
Ghedira
,
H.
,
2012
, “
Assessment and Recalibration of the Heliosat-2 Method in Global Horizontal Irradiance Modeling Over the Desert Environment of the UAE
,”
Sol. Energy
,
86
(
6
), pp.
1816
1825
. 10.1016/j.solener.2012.03.005
80.
Ineichen
,
P.
,
2014
, “
Long Term Satellite Global, Beam and Diffuse Irradiance Validation
,”
Energy Proc.
,
48
, pp.
1586
1596
. 10.1016/j.egypro.2014.02.179
81.
Vindel
,
J. M.
,
Navarro
,
A. A.
,
Valenzuela
,
R. X.
, and
Ramírez
,
L.
,
2016
, “
Temporal Scaling Analysis of Irradiance Estimated From Daily Satellite Data and Numerical Modelling
,”
Atmos. Res.
,
181
, pp.
154
162
. 10.1016/j.atmosres.2016.06.020
82.
Bojanowski
,
J. S.
,
Vrieling
,
A.
, and
Skidmore
,
A. K.
,
2014
, “
A Comparison of Data Sources for Creating a Long-Term Time Series of Daily Gridded Solar Radiation for Europe
,”
Sol. Energy
,
99
, pp.
152
171
. 10.1016/j.solener.2013.11.007
You do not currently have access to this content.