Abstract

The objective of this paper is the investigation of the annual performance of a solar power plant with linear Fresnel reflectors in the El-Oued region at Algeria. The solar collectors produce water steam that feeds a turbine to produce electricity. The System Advisor Model (sam) tool is used for simulation. The mean net daily electricity production rate from 8:30 am to 5:30 pm is 48 MWe, and the respective annual production is 210,336 MWh/year. The mean daily optical efficiency of the solar field was close to 52%, while the mean thermal efficiency was about 39%. The net daily cycle efficiency is found to be 24%. The net capital cost of the examined system is $393 million, and the developer net present value is $47 million; the investor net present value is $15 million, the entire period of capital recovery is 11 years, and the levelized cost of electricity is 0.0382 $/kWh. The solar power plant leads to the yearly avoidance of 420,672 tons carbon dioxide emissions (operational cost savings of $6.1 million). Based on the obtained results, linear Fresnel reflectors can be used to achieve satisfying, energetic, financial, and environmental performance that can lead to sustainability.

References

1.
Adly
,
A. R.
,
Ali
,
Z. M.
,
Elsadd
,
M. A.
,
Mageed
,
H. M. A.
, and
Aleem
,
S. H. A.
,
2020
, “
An Integrated Scheme for a Directional Relay in the Presence of a Series-Compensated Line
,”
Int. J. Elec. Power Energy Syst.
,
120
, p.
106024
. 106010.101016/j.ijepes.102020.106024
2.
Mostafa
,
M. H.
,
Aleem
,
S. H. A.
,
Ali
,
S. G.
,
Ali
,
Z. M.
, and
Abdelaziz
,
A. Y.
,
2020
, “
Techno-Economic Assessment of Energy Storage Systems Using Annualized Life Cycle Cost of Storage (LCCOS) and Levelized Cost of Energy (LCOE) Metrics
,”
J. Energy Storage
,
29
, p.
101345
. 10.1016/j.est.2020.101345
3.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2019
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
. 010810.011115/010801.4041159
4.
Qu
,
M.
,
Yin
,
H.
, and
Archer
,
D. H.
,
May 2010
, “
Experimental and Model Based Performance Analysis of a Linear Parabolic Trough Solar Collector in a High Temperature Solar Cooling and Heating System
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021004
. 021010.021115/021001.4001406
5.
Tzivanidis
,
C.
, and
Bellos
,
E.
,
2016
, “
The Use of Parabolic Trough Collectors for Solar Cooling—A Case Study for Athens Climate
,”
Case Stud. Therm. Eng.
,
8
, pp.
403
413
. 410.1016/j.csite.2016.1010.1003
6.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Moummi
,
N.
,
Largot
,
S.
, and
Berkane
,
H.
,
2016
, “
Study and Numerical Simulation of Solar System for Air Heating
,”
J. Fundam. Appl. Sci.
,
8
(
1
), pp.
41
60
. 10.4314/jfas.v4318i4311.4313
7.
Ghodbane
,
M.
, and
Boumeddane
,
B.
,
2017
, “
A Parabolic Trough Solar Collector as a Solar System for Heating Water: A Study Based on Numerical Simulation
,”
Int. J. Energetica
,
2
(
2
), pp.
29
37
. https://www.ijeca.info/index.php/IJECA/article/view/32.
8.
Nowzari
,
R.
,
Saygin
,
H.
, and
Aldabbagh
,
L. B. Y.
,
2021
, “
Evaluating the Performance of a Modified Solar Air Heater With Pierced Cover and Packed Mesh Layers
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011006
. 011010.011115/011001.4047528
9.
Abutayeh
,
M.
,
Jeong
,
K.
,
Alazzam
,
A.
, and
El-Khasawneh
,
B.
,
2019
, “
Streamlining the Power Generation Profile of Concentrating Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021002
. 021010.021115/021001.4042064
10.
El hamdani
,
F.
,
Vaudreuil
,
S.
,
Abderafi
,
S.
, and
Bounahmidi
,
T.
,
2020
, “
Techno-Economic Evaluation of a Concentrating Solar Power Plant Driven by an Organic Rankine Cycle
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061009
. 061010.061115/061001.4047192
11.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Said
,
Z.
, and
Bellos
,
E.
,
2019
, “
A Numerical Simulation of a Linear Fresnel Solar Reflector Directed to Produce Steam for the Power Plant
,”
J. Cleaner Prod.
,
231
, pp.
494
508
. 410.1016/j.jclepro.2019.1005.1201
12.
Lamidi
,
R. O.
,
Jiang
,
L.
,
Pathare
,
P. B.
,
Wang
,
Y. D.
, and
Roskilly
,
A. P.
,
2019
, “
Recent Advances in Sustainable Drying of Agricultural Produce: A Review
,”
Appl. Energy
,
233–234
, pp.
367
385
. 310.1016/j.apenergy.2018.1010.1044
13.
Sandali
,
M.
,
Boubekri
,
A.
, and
Mennouche
,
D.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050802
. 050810.051115/050801.4043613
14.
Saxena
,
G.
, and
Gaur
,
M. K.
,
2020
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051009
. 051010.051115/051001.4046465
15.
Dave
,
T.
, and
Krishnan
,
S.
,
2021
, “
Performance Evaluation and Characterization of a Direct Absorption Solar Humidifier for Humidification-Dehumidification Desalination
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011010
. 10.1115/1.4047670
16.
Khechekhouche
,
A.
,
Benhaoua
,
B.
,
Manokar
,
A. M.
,
Kabeel
,
A. E.
, and
Sathyamurthy
,
R.
,
2019
, “
Exploitation of an Insulated Air Chamber as a Glazed Cover of a Conventional Solar Still
,”
Heat Transfer Asian
,
48
(
5
), pp.
1563
1574
. 1510.1002/htj.21446
17.
Sharaf
,
M. A.
,
2012
, “
Thermo-Economic Comparisons of Different Types of Solar Desalination Processes
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031001
. 031010.031115/031001.4005752
18.
Mousa
,
B.
,
and Taylor
,
O. M.
, and
A
,
R.
,
2019
, “
A Broad Comparison of Solar Photovoltaic and Thermal Technologies for Industrial Heating Applications
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011002
. 011010.011115/011001.4040840
19.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
. 210.1016/j.pecs.2004.1002.1001
20.
Shankar
,
R.
, and
Srinivas
,
T.
,
2014
, “
Investigation on Operating Processes for a New Solar Cooling Cogeneration Plant
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031016
. 031010.031115/031011.4027423
21.
Ghodbane
,
M.
,
Bellos
,
E.
,
Said
,
Z.
,
Boumeddane
,
B.
,
Hussein
,
A. K.
, and
Kolsi
,
L.
,
2020
, “
Evaluating Energy Efficiency and Economic Effect of Heat Transfer in Copper Tube for Small Solar Linear Fresnel Reflector
,”
J. Therm. Anal. Calorim.
,
1
(
19
). 10.1007/s10973-10020-09384-10976
22.
Abutayeh
,
M.
,
Addad
,
Y.
,
Abu-Nada
,
E.
, and
Alazzam
,
A.
,
2019
, “
Doping Solar Field Heat Transfer Fluid With Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011013
. 011010.011115/011011.4041157
23.
Ghodbane
,
M.
,
Said
,
Z.
,
Hachicha
,
A. A.
, and
Boumeddane
,
B.
,
2019
, “
Performance Assessment of Linear Fresnel Solar Reflector Using MWCNTs/DW Nanofluids
,”
Renew. Energy
,
151
, pp.
43
56
. 10.1016/j.renene.2019.1010.1137
24.
Okonkwo
,
E. C.
,
Abid
,
M.
,
Ratlamwala
,
T. A. H.
,
Abbasoglu
,
S.
, and
Dagbasi
,
M.
,
2019
, “
Optimal Analysis of Entropy Generation and Heat Transfer in Parabolic Trough Collector Using Green-Synthesized TiO2/Water Nanofluids
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031011
. 031010.031115/031011.4041847
25.
Korres
,
D.
,
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Investigation of a Nanofluid-Based Compound Parabolic Trough Solar Collector Under Laminar Flow Conditions
,”
Appl. Therm. Eng.
,
149
, pp.
366
376
. 310.1016/j.applthermaleng.2018.1012.1077
26.
Loni
,
R.
,
Ghobadian
,
B.
,
Kasaeian
,
A. B.
,
Akhlaghi
,
M. M.
,
Bellos
,
E.
, and
Najafi
,
G.
,
2020
, “
Sensitivity Analysis of Parabolic Trough Concentrator Using Rectangular Cavity Receiver
,”
Appl. Therm. Eng.
,
169
, p.
114948
. 114910.111016/j.applthermaleng.112020.114948
27.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid
,”
J. Cleaner Prod.
,
133
, pp.
518
530
. 510.1016/j.jclepro.2016.1005.1178
28.
Rafiei
,
A.
,
Loni
,
R.
,
Mahadzir
,
S. B.
,
Najafi
,
G.
,
Pavlovic
,
S.
, and
Bellos
,
E.
,
2020
, “
Solar Desalination System With a Focal Point Concentrator Using Different Nanofluids
,”
Appl. Therm. Eng.
,
174
, p.
115058
. 115010.111016/j.applthermaleng.112020.115058
29.
Said
,
Z.
,
Assad
,
E. H.
,
Hachicha
,
M.
,
Bellos
,
A. A.
,
Abdelkareem
,
E.
,
Alazaizeh
,
M. A.
, and
Yousef
,
D. Z.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renew. Sustain. Energy Rev.
,
112
, pp.
183
194
. 110.1016/j.rser.2019.1005.1052
30.
Said
,
Z.
,
Abdelkareem
,
M. A.
,
Rezk
,
H.
,
Nassef
,
A. M.
, and
Atwany
,
H. Z.
,
2020
, “
Stability, Thermophysical and Electrical Properties of Synthesized Carbon Nanofiber and Reduced-Graphene Oxide-Based Nanofluids and Their Hybrid Along With Fuzzy Modeling Approach
,”
Powder Technol.
,
364
, pp.
795
809
. 10.1016/j.powtec.2020.1002.1026
31.
Bellos
,
E.
,
2019
, “
Progress in the Design and the Applications of Linear Fresnel Reflectors—A Critical Review
,”
Ther. Sci. Eng. Prog.
,
10
, pp.
112
137
. 110.1016/j.tsep.2019.1001.1014
32.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Said
,
N.
,
2016
, “
Design and Experimental Study of a Solar System for Heating Water Utilizing a Linear Fresnel Reflector
,”
J. Fundam. Appl. Sci.
,
8
(
3
), pp.
804
825
. 810.4314/jfas.v4318i4313.4318
33.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Said
,
N.
,
2016
, “
A Linear Fresnel Reflector as a Solar System for Heating Water: Theoretical and Experimental Study
,”
Case Stud. Therm. Eng.
,
8
, pp.
176
186
. 110.1016/j.csite.2016.1006.1006
34.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Development of Analytical Expressions for the Incident Angle Modifiers of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
769
779
. 710.1016/j.solener.2018.1008.1019
35.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Moghimi
,
M. A.
,
2019
, “
Reducing the Optical End Losses of a Linear Fresnel Reflector Using Novel Techniques
,”
Sol. Energy
,
186
, pp.
247
256
. 210.1016/j.solener.2019.1005.1020
36.
Said
,
Z.
,
Ghodbane
,
M.
,
Hachicha
,
A. A.
, and
Boumeddane
,
B.
,
2019
, “
Optical Performance Assessment of a Small Experimental Prototype of Linear Fresnel Reflector
,”
Case Stud. Therm. Eng.
,
16
, p.
100541
.
10.1016/j.csite.2019.100541
37.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Secondary Concentrator Optimization of a Linear Fresnel Reflector Using Bezier Polynomial Parametrization
,”
Sol. Energy
,
171
, pp.
716
727
. 710.1016/j.solener.2018.1007.1025
38.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Daily, Monthly and Yearly Performance of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
517
529
. 10.1016/j.solener.2018.08.008)
39.
Bellos
,
E.
,
Mathioulakis
,
E.
,
Papanicolaou
,
E.
, and
Belessiotis
,
V.
,
2018
, “
Experimental Investigation of the Daily Performance of an Integrated Linear Fresnel Reflector System
,”
Sol. Energy
,
167
, pp.
220
230
. 210.1016/j.solener.2018.1004.1019
40.
Bellos
,
E.
,
Mathioulakis
,
E.
,
Tzivanidis
,
C.
,
Belessiotis
,
V.
, and
Antonopoulos
,
K. A.
,
2016
, “
Experimental and Numerical Investigation of a Linear Fresnel Solar Collector With Flat Plate Receiver
,”
Energy Convers. Manage.
,
130
, pp.
44
59
. 10.1016/j.enconman.2016.1010.1041
41.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Multi-Criteria Evaluation of a Nanofluid-Based Linear Fresnel Solar Collector
,”
Sol. Energy
,
163
, pp.
200
214
. 210.1016/j.solener.2018.1002.1007
42.
Bellos
,
E.
,
Said
,
Z.
, and
Tzivanidis
,
C.
,
2018
, “
The Use of Nanofluids in Solar Concentrating Technologies: A Comprehensive Review
,”
J. Cleaner Prod.
,
196
, pp.
84
99
. 10.1016/j.jclepro.2018.1006.1048
43.
Dellicompagni
,
P.
, and
Franco
,
J.
,
2019
, “
Potential Uses of a Prototype Linear Fresnel Concentration System
,”
Renew. Energy
,
136
, pp.
1044
1054
. 1010.1016/j.renene.2018.1010.1005
44.
Marugán-Cruz
,
C.
,
Serrano
,
D.
,
Gómez-Hernández
,
J.
, and
Sánchez-Delgado
,
S.
,
2019
, “
Solar Multiple Optimization of a DSG Linear Fresnel Power Plant
,”
Energy Convers. Manage.
,
184
, pp.
571
580
. 510.1016/j.enconman.2019.1001.1054
45.
Pulido-Iparraguirre
,
D.
,
Valenzuela
,
L.
,
Aguilera
,
J. J.
, and
Fernández-Garcíaa
,
A.
,
2019
, “
Optimized Design of a Linear Fresnel Reflector for Solar Process Heat Applications
,”
Renew. Energy
,
131
, pp.
1089
1106
. 1010.1016/j.renene.2018.1008.1018
46.
Binotti
,
M.
,
Giostri
,
A.
,
Astolfi
,
M.
,
Colombo
,
L.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2011
, “
Partial Admission vs. Sliding Pressure Applied to DSG Solar Plant Based on Linear Fresnel Reflector
,”
In Solar Paces 2011, Concentrating Solar Power and Chemical Energy Systems
,
Granada, Spain
,
Sept. 20–23
, pp.
1
8
.
47.
Sellal
,
A
.,
2017
, “Décret exécutif n° 17-98 du 29 Joumada El Oula 1438 correspondant au 26 février 2017 définissant la procédure d’appel d’offres pour la production des énergies renouvelables ou de cogénération et leur intégration dans le système national d’approvisionnement en énergie électrique,” JOURNAL OFFICIEL DE LA REPUBLIQUE ALGERIENNE N° 15, pp.
3
8
. https://www.energy.gov.dz/Media/galerie/decret_17-98_5b6854c307691.pdf
49.
NREL
,
2019
, “Concentrating Solar Power Projects: Linear Fresnel Reflector Projects.” The National Renewable Energy Laboratory, https://solarpaces.nrel.gov/by-technology/linear-fresnel-reflector
50.
NAID
,
2017
, “National Agency of Investment Development: Renewable Energy Sector.” http://www.andi.dz/index.php/en/les-energies-renouvelables
51.
NREL
,
2020
, “Concentrating Solar Power Projects: ISCC Hassi R'mel.” https://solarpaces.nrel.gov/iscc-hassi-rmel
52.
EGRC
,
2015
, “Algerian Electricity and Gas Regulation Commission: CREG decision n° D / 22-15 / CD of December 29, 2015. Establishing Gas Electricity Tariffs: Low-Voltage Electricity Pricing and Low-Pressure Natural Gas Pricing,” pp.
1
8
, http://www.creg.gov.dz/D%C3%A9cisions/D_22-15_CD_FR.pdf
53.
Elbar
,
A. R. A.
,
Yousef
,
M. S.
, and
Hassan
,
H.
,
2019
, “
Energy, Exergy, Exergoeconomic and Enviroeconomic (4E) Evaluation of a New Integration of Solar Still With Photovoltaic Panel
,”
J. Cleaner Prod.
,
233
, pp.
665
680
. 610.1016/j.jclepro.2019.1006.1111
You do not currently have access to this content.