Abstract
Batch type food dryers are common for drying agricultural produce due to simple in design, but they are prone to nonuniform drying and significant heat cost exclusively if they fall in the medium to large size range. The current study illustrates a solar hybrid food dryer using a gas burner and solar collector (evacuated tube collector, ETC) as heating source along with an inline perforation inside the drying chamber to obtain spatial drying homogeneity. Air distribution was assessed through three-dimensional simulation using computational fluid dynamics (CFD) analysis. Performance trials were conducted under three heating options (ETC, gas, and dual) using green chilies at 60 °C. Throughout drying chamber, under all heating modes, the average difference in drying rates ranged from 0.61 to 1.30 kg water/kg dry matter, demonstrating homogeneous drying. Simulated and experimental results of air distribution were found to be in agreement with each other. Using three options for thermal heating (ETC, gas, and dual) and an overall 58% efficiency for evacuated tube collector, the specific energy for moisture evaporation was found to be 4.5–5.7 MJ/kg and specific product energy 19.2–24.9 MJ/kg. In case of dual heating option, the energy supplied by solar and gas sources for a 20 hours period was 50.64% (160.22 MJ) and 49.35% (156.13 MJ), respectively. Compared with dual heating option, energy cost can be reduced by 68% if only solar energy is used as a heating option but with a protracted drying time.