Abstract

The importance of accurately forecasting the power production of wind farms is boosting the development of meteorological models and their processing. This work is a discussion of different forecast configurations for predicting the day ahead production of a wind farm sited in a moderately complex terrain. The numerical weather prediction (NWP) model MetCoOp Ensemble Prediction System with 2.5 km resolution focusing on the wind farm area is dynamically downscaled by the computational fluid model (CFD) model WindSim. The transfer of the NWP model to the CFD model can be done using NWP results from various heights above ground and using all or parts of the nodes of the NWP model within the wind farm area. In this work, many different forecasting configurations are validated and the impact on the forecast performance is discussed. The NWP-CFD downscaling results are compared to a day ahead forecast obtained through ANN methods and to the observed production. The main result of this work is that a deterministic downscaling method like CFD simulations can perform as good or better than statistical approaches when using high-resolution NWP models and more NWP model data.

References

1.
Xu
,
Z.
,
Gordon
,
M.
,
Lind
,
M.
, and
Østergaard
,
J.
,
2009
, “
Towards a Danish Power System With 50 Activities in Denmark
,”
2009 IEEE Power and Energy Society General Meeting, IEEE
,
Calgary, AB, Canada
,
July 26–30
. http://dx.doi.org/ 10.1109/PES.2009.5275558
2.
Foley
,
A. M.
,
Leahy
,
P. G.
,
Marvuglia
,
A.
, and
McKeogh
,
E. J.
,
2012
, “
Current Methods and Advances in Forecasting of Wind Power Generation
,”
Renewable Energy
,
37
(
1
), pp.
1
8
. 10.1016/j.renene.2011.05.033
3.
Mughal
,
M. O.
,
Lynch
,
M.
,
Yu
,
F.
, and
Sutton
,
J.
,
2018
, “
Forecasting and Verification of Winds in An East African Complex Terrain Using Coupled Mesoscale-and Micro-scale Models
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
13
20
. 10.1016/j.jweia.2018.03.006
4.
Sanz Rodrigo
,
J.
,
Chávez Arroyo
,
R. A.
,
Moriarty
,
P.
,
Churchfield
,
M.
,
Kosović
,
B.
,
Réthoré
,
P.-E.
,
Hansen
,
K. S.
,
Hahmann
,
A.
,
Mirocha
,
J. D.
, and
Rife
,
D.
,
2017
, “
Mesoscale to Microscale Wind Farm Flow Modeling and Evaluation
,”
Wiley Interdisc. Rev.: Energy Environ.
,
6
(
2
), p.
e214
. 10.1002/wene.214
5.
Soman
,
S. S.
,
Zareipour
,
H.
,
Malik
,
O.
, and
Mandal
,
P.
,
2010
, “
A Review of Wind Power and Wind Speed Forecasting Methods With Different Time Horizons
,”
North American Power Symposium (NAPS)
2010, Sept. 26–28
,
IEEE, Silver Spring, MD
, pp.
1
8
.
6.
Castellani
,
F.
,
Burlando
,
M.
,
Taghizadeh
,
S.
,
Astolfi
,
D.
, and
Piccioni
,
E.
,
2014
, “
Wind Energy Forecast in Complex Sites with a Hybrid Neural Network and Cfd Based Method
,”
Energy Procedia
,
45
, pp.
188
197
. 10.1016/j.egypro.2014.01.021
7.
Castellani
,
F.
,
Astolfi
,
D.
,
Mana
,
M.
,
Burlando
,
M.
,
Meißner
,
C.
, and
Piccioni
,
E.
,
2016
, “
Wind Power Forecasting Techniques in Complex Terrain: Ann Vs. Ann-cfd Hybrid Approach
,”
J. Phys.: Conf. Ser.
,
753
, p.
082002
. 10.1088/1742-6596/753/8/082002
8.
Mana
,
M.
,
Burlando
,
M.
, and
Meissner
,
C.
,
2017
, “
Evaluation of Two ANN Approaches for the Wind Power Forecast in a Mountainous Site
,”
Int. J. Renewable Energy Res.
,
7
(
4
), pp.
1629
1638
.
9.
Zajaczkowski
,
F. J.
,
Haupt
,
S. E.
, and
Schmehl
,
K. J.
,
2011
, “
A Preliminary Study of Assimilating Numerical Weather Prediction Data Into Computational Fluid Dynamics Models for Wind Prediction
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
320
329
. 10.1016/j.jweia.2011.01.023
10.
Castro
,
F.
,
Silva Santos
,
C.
, and
Lopes da Costa
,
J.
,
2015
, “
One-Way Mesoscale-Microscale Coupling for the Simulation of Atmospheric Flows Over Complex Terrain
,”
Wind Energy
,
18
(
7
), pp.
1251
1272
. 10.1002/we.1758
11.
Churchfield
,
M.
,
Lee
,
S.
,
Moriarty
,
P.
,
Martinez
,
L.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
537
.
12.
Churchfield
,
M. J.
,
Sang
,
L.
, and
Moriarty
,
P. J.
,
2013
, “
Adding Complex Terrain and Stable Atmospheric Condition Capability to the Openfoam-Based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO (United States)
,
Technical Report
.
13.
Müller
,
M.
,
Homleid
,
M.
,
Ivarsson
,
K.-I.
,
Køltzow
,
M. A.
,
Lindskog
,
M.
,
Midtbø
,
K. H.
,
Andrae
,
U.
,
Aspelien
,
T.
,
Berggren
,
L.
,
Bjørge
,
D.
,
2017
, “
Arome-Metcoop: A Nordic Convective-Scale Operational Weather Prediction Model
,”
Weather Forecasting
,
32
(
2
), pp.
609
627
. 10.1175/WAF-D-16-0099.1
14.
Girimaji
,
S.
, and
Abdol-Hamid
,
K.
,
2005
, “
Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, p.
502
.
15.
Moreno
,
P.
,
Gravdahl
,
A.
, and
Romero
,
M.
,
2003
, “
Wind Flow Over Complex Terrain: Application of Linear and CFD Models
,”
European Wind Energy Conference and Exhibition
,
Madrid, Spain
,
June 16–19
, pp.
16
19
.
16.
Dhunny
,
A.
,
Lollchund
,
M.
, and
Rughooputh
,
S.
,
2017
, “
Wind Energy Evaluation for a Highly Complex Terrain Using Computational Fluid Dynamics (cfd)
,”
Renewable Energy
,
101
, pp.
1
9
. 10.1016/j.renene.2016.08.032
17.
Peralta
,
C.
,
Nugusse
,
H.
,
Kokilavani
,
S.
,
Schmidt
,
J.
, and
Stoevesandt
,
B.
,
2014
, “
Validation of the Simplefoam (RANS) Solver for the Atmospheric Boundary Layer in Complex Terrain
,”
ITM Web of Conferences
, Vol.
2
,
EDP Sciences Les Ulis
,
France
, p.
01002
.
18.
Abdi
,
D. S.
, and
Bitsuamlak
,
G. T.
,
2014
, “
Wind Flow Simulations on Idealized and Real Complex Terrain Using Various Turbulence Models
,”
Adv. Eng. Software
,
75
, pp.
30
41
. 10.1016/j.advengsoft.2014.05.002
19.
Jensen
,
N. O.
,
1983
, “
A Note on Wind Generator Interaction
Technical Report
,
Roskilde
,
Risø National Laboratory
,
Risø-M, No. 2411
.
20.
Gerard
,
L.
, and
Geleyn
,
J.-F.
,
2005
, “
Evolution of a Subgrid Deep Convection Parametrization in a Limited-area Model with Increasing Resolution
,”
Quart. J. Roy. Meteor. Soc.: A J. Atmos. Sci., Appl. Meteor. Phys. Oceanogr.
,
131
(
610
), pp.
2293
2312
. 10.1256/qj.04.72
21.
Jung
,
J.-H.
, and
Arakawa
,
A.
,
2014
, “
Modeling the Moist-Convective Atmosphere With a Quasi-3-d Multiscale Modeling Framework (q3d Mmf)
,”
J. Adv. Modeling Earth Systems
,
6
(
1
), pp.
185
205
. 10.1002/2013MS000295
You do not currently have access to this content.