Abstract

Solar radiation is a rich and clean source of energy. It can be collected and converted to thermal energy with the help of flat plate collectors called the solar-assisted air heater. Because of the low coefficient of heat transfer of air, the solar-assisted air heater has low thermal performance which can be improved by creating local turbulence using surface roughness on the heat transferring plate. The present investigation has been conducted to perceive the influence of the curved-ribbed element with gap on flow and heat transfer. The roughness element is defined by using five non-dimensionlized parameters, i.e., relative roughness width (W/w), relative roughness pitch (P/e), relative gap width (g/e), relative roughness height (e/D), and relative gap distance (d/x). The radius of the curvature of the curved rib-element is kept constant and the experimental measurements were done under quasi-steady state. The thermohydraulic performance parameter improved by 3.61 times the smooth flat plate solar air heater (SAH), in curved-ribbed SAH for W/w = 3, P/e = 8, g/e = 1, e/D = 0.045, and d/x = 0.65 at Reynolds number of 23,000. The generalized relation for heat transfer and flow characteristics is also being developed and the predicted Nusselt number and friction factor with the accuracy of ± 7.5% and ± 6.7%, respectively.

References

1.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Simulation of Flow and Heat Transfer in Triangular Cross-Sectional Solar-Assisted Air Heater
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011007
. 10.1115/1.4041098
2.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar air Heater due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renewable Energy
,
115
, pp.
824
835
. 10.1016/j.renene.2017.09.010
3.
Kumar
,
R.
,
Varun
, and
Kumar
,
A.
,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
. 10.1115/1.4036775
4.
Tomar
,
V.
,
Tiwari
,
G. N.
, and
Norton
,
B.
,
2017
, “
Solar Dryers for Tropical Food Preservation: Thermophysics of Crops, Systems and Components
,”
Sol. Energy
,
154
, pp.
2
13
. 10.1016/j.solener.2017.05.066
5.
Seerangurayar
,
T.
,
Al-Ismaili
,
A. M.
,
Jeewantha
,
L. J.
, and
Al-Habsi
,
N. A.
,
2019
, “
Effect of Solar Drying Methods on Color Kinetics and Texture of Dates
,”
Food Bioprod. Process.
,
116
, pp.
227
239
. 10.1016/j.fbp.2019.03.012
6.
Varun
,
Saini
,
R. P.
, and
Singal
,
S. K.
,
2007
, “
A Review on Roughness Geometry Used in Solar air Heaters
,”
Sol. Energy
,
81
(
11
), pp.
1340
1350
. 10.1016/j.solener.2007.01.017
7.
Bharadwaj
,
G.
,
Varun
,
Kumar
,
R.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater: An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
. 10.1080/15435075.2017.1307751
8.
Kumar
,
R.
, and
Kumar
,
A.
,
2016
, “
Thermal and Fluid Dynamic Characteristics of Flow Through Triangular Cross-Sectional Duct: A Review
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
123
140
. 10.1016/j.rser.2016.03.011
9.
Hellmuth
,
T. E.
, and
Matthews
,
L. K.
,
1997
, “
Modeling and Optimum Design of a Wire Mesh Solar Volumetric air Receiver
,”
ASME J. Sol. Energy Eng.
,
119
(
3
), pp.
208
213
. 10.1115/1.2888020
10.
Pandey
,
N. K.
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer and Friction Characteristics of Arc-Shaped Roughness Elements Having Central Gaps on the Absorber Plate of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041005
. 10.1115/1.4033402
11.
Kumar
,
R.
,
Khurana
,
S.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Effect of Dimple Intrusions and Curvature Radius of Rounded Corner Triangular Duct on Fluid Flow and Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031001
. 10.1115/1.4041683
12.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2018
, “
Effect of Rounded Corners on Heat Transfer and Fluid Flow Through Triangular Duct
,”
ASME J. Heat Transfer
,
140
(
12
), p.
121701
. 10.1115/1.4040957
13.
Jain
,
S. K.
,
Agrawal
,
G. D.
, and
Misra
,
R.
,
2019
, “
A Detailed Review on Various V-Shaped Ribs Roughened Solar Air Heater
,”
Heat Mass Transfer
,
55
(
12
), pp.
3369
3412
. 10.1007/s00231-019-02656-4
14.
Singh
,
S.
, and
Thakur
,
N. S.
,
2019
, “
Investigational Analysis of Roughened Solar Air Heater Channel Having W-Shaped Ribs with Symmetrical Gaps Along with Staggered Ribs
,”
Energy Sources, Part A
10.1080/15567036.2019.1675815.
15.
Kumar
,
R.
,
Goel
,
V.
,
Singh
,
P.
,
Saxena
,
A.
,
Kashyap
,
A. S.
, and
Rai
,
A.
,
2019
, “
Performance Evaluation and Optimization of Solar Assisted Air Heater With Discrete Multiple arc Shaped Ribs
,”
J. Energy Storage
,
26
, p.
100978
. 10.1016/j.est.2019.100978
16.
Saini
,
S. K.
, and
Saini
,
R. P.
,
2008
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar air Heater With Roughened Duct Having Arc-Shaped Wire as Artificial Roughness
,”
Sol. Energy
,
82
(
12
), pp.
1118
1130
. 10.1016/j.solener.2008.05.010
17.
Pandey
,
N. K.
,
Varun
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer Augmentation Using Multiple Arcs With Gap on Absorber Plate of Solar air Heater
,”
Sol. Energy
,
134
, pp.
314
326
. 10.1016/j.solener.2016.05.007
18.
Sahu
,
M. K.
, and
Prasad
,
R. K.
,
2017
, “
Thermohydraulic Performance Analysis of an Arc Shape Wire Roughened Solar air Heater
,”
Renewable Energy
,
108
, pp.
598
614
. 10.1016/j.renene.2017.02.075
19.
Singh
,
A. P.
,
Varun
, and
Siddhartha
,
2014
, “
Heat Transfer and Friction Factor Correlations for Multiple Arc Shape Roughness Elements on the Absorber Plate Used in Solar air Heaters
,”
Exp. Therm. Fluid. Sci.
,
54
, pp.
117
126
. 10.1016/j.expthermflusci.2014.02.004
20.
Gill
,
R. S.
,
Hans
,
V. S.
, and
Singh
,
S.
,
2017
, “
Investigations on Thermo-Hydraulic Performance of Broken Arc Rib in a Rectangular Duct of Solar Air Heater
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
20
27
. 10.1016/j.icheatmasstransfer.2017.07.024
21.
Hans
,
V. S.
,
Gill
,
R. S.
, and
Singh
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Broken Arc Ribs
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
77
89
. 10.1016/j.expthermflusci.2016.07.022
22.
Saravanakumar
,
P. T.
,
Somasundaram
,
D.
, and
Matheswaran
,
M. M.
,
2019
, “
Thermal and Thermo-Hydraulic Analysis of Arc Shaped Rib Roughened Solar Air Heater Integrated With Fins and Baffles
,”
Sol. Energy
,
180
, pp.
360
371
. 10.1016/j.solener.2019.01.036
23.
ASHRAE Standard 93-97
. (
1977
).
Method of Testing to Determine the Thermal Performance of Solar Collector
.
24.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
25.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2017
, “
A Parametric Analysis of Rectangular rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics
,”
Sol. Energy
,
157
, pp.
1095
1107
. 10.1016/j.solener.2017.08.071
26.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar air Heater
,”
Renewable Energy
,
131
, pp.
788
799
. 10.1016/j.renene.2018.07.078
27.
Lewis
,
M. J.
,
1975
, “
Optimising the Thermohydraulic Performance of Rough Surfaces
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1243
1248
. 10.1016/0017-9310(75)90232-X
28.
Goel
,
V.
,
Guleria
,
P.
, and
Kumar
,
R.
,
2017
, “
Effect of Apex Angle Variation on Thermal and Hydraulic Performance of Roughened Triangular Duct
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
239
244
. 10.1016/j.icheatmasstransfer.2017.06.008
You do not currently have access to this content.