To meet the increasing energy demand and to shave the peak, the Kingdom of Saudi Arabia (KSA) is currently planning to invest more on renewable energy (RE) seeking diversity of energy resources. Through the integration of demand-side management measures and renewable energy distributed generation (DG) systems, the study outlined in this paper aims at investigating the potential of hybrid renewable energy systems in supplying energy demands for residential communities in an oil-rich country. The residential community considered in this study, located in the eastern region of KSA, has an annual electrical usage of 1174 GWh and an electrical peak load of 335 MW that are met solely by the grid. The results of the analyses indicated that the implementation of cost-effective energy efficiency measures (EEMs) reduced the electricity usage by 38% and peak demand by 51% as well as CO2 emissions by 38%. Although the analysis of the hybrid systems showed that purchasing electricity from the grid is the best option with a levelized cost of energy (LCOE) of $0.1/kWh based on the current renewable energy market and economic conditions of KSA, RE systems can be cost-effective to meet the loads of the residential communities under specific electricity prices and capital cost levels.

References

1.
International Energy Agency (IEA)
,
2018
, “
Key World Energy Statistics 2018
” International Energy Agency (IEA), Paris, France.
2.
Export.gov.
,
2017
, “
Saudi Arabia—Energy
,” https://www.export.gov/article?id=Saudi-Arabia-Energy. Accessed May 29, 2018.
3.
Tlili
,
I.
,
2015
, “
Renewable Energy in Saudi Arabia: Current Status and Future Potentials
,”
Environ. Dev. Sust.
,
17
(
4
), pp.
859
886
.
4.
Demirbas
,
A.
,
Hashem
,
A. A.
, and
Bakhsh
,
A. A.
,
2017
, “
The Cost Analysis of Electric Power Generation in Saudi Arabia
,”
Energy Sources B: Econ. Plann. Policy
,
12
(
6
), pp.
591
596
.
5.
Obaid
,
R. R.
, and
Mufti
,
A. H.
,
2008
, “
Present State, Challenges, and Future of Power Generation in Saudi Arabia
,”
IEEE Energy 2030 Conference
,
Atlanta, GA
,
Nov. 17–18
, pp.
1
6
.
6.
Matar
,
W.
, and
Anwer
,
M.
,
2017
, “
Jointly Reforming the Prices of Industrial Fuels and Residential Electricity in Saudi Arabia
,”
Energy Policy
,
109
(
July
), pp.
747
756
.
7.
Al-Ajlan
,
S. A.
,
Al-Ibrahim
,
A. M.
,
Abdulrahman
,
M.
,
Abdulkhaleq
,
M.
, and
Alghamdi
,
F.
,
2006
, “
Developing Sustainable Energy Policies for Electrical Energy Conservation in Saudi Arabia
,”
Energy Policy
,
34
(
13
), pp.
1556
1565
.
8.
Jurgenson
,
S.
,
Bayyari
,
F. M.
, and
Parker
,
J.
,
2016
, “
A Comprehensive Renewable Energy Program for Saudi Vision 2030
,”
Renew. Energy Focus
,
17
(
5
), pp.
182
183
.
9.
Al-Sharafi
,
A.
,
Sahin
,
A. Z.
,
Ayar
,
T.
, and
Yilbas
,
B. S.
,
2017
, “
Techno-Economic Analysis and Optimization of Solar and Wind Energy Systems for Power Generation and Hydrogen Production in Saudi Arabia
,”
Renew. Sustain. Ener. Rev.
,
69
, pp.
33
49
.
10.
Das
,
B. K.
,
Hoque
,
N.
,
Mandal
,
S.
,
Pal
,
T. K.
, and
Abu Raihan
,
M.
,
2017
, “
A Techno-Economic Feasibility of a Stand-Alone Hybrid Power Generation for Remote Area Application in Bangladesh
,”
Energy
,
134
, pp.
775
788
.
11.
Qolipour
,
M.
,
Mostafaeipour
,
A.
, and
Tousi
,
O. M.
,
2017
, “
Techno-Economic Feasibility of a Photovoltaic-Wind Power Plant Construction for Electric and Hydrogen Production: A Case Study
,”
Renew. Sustain. Ener. Rev.
,
78
, pp.
113
123
.
12.
Hossain
,
M.
,
Mekhilef
,
S.
, and
Olatomiwa
,
L.
,
2017
, “
Performance Evaluation of a Stand-Alone PV-Wind-Diesel-Battery Hybrid System Feasible for a Large Resort Center in South China Sea, Malaysia
,”
Sustain. Cities Soc.
,
28
, pp.
358
366
.
13.
Himri
,
Y.
,
Boudghene
,
A. S.
,
Draoui
,
B.
, and
Himri
,
S.
,
2008
, “
Techno-Economical Study of Hybrid Power System for a Remote Village in Algeria
,”
Energy
,
33
(
7
), pp.
1128
1136
.
14.
Shaahid
,
S. M.
,
2017
, “
Economic Feasibility of Decentralized Hybrid Photovoltaic-Diesel Technology in Saudi Arabia: A Way Forward for Sustainable Coastal Development
,”
Therm. Sci.
,
21
(
1
), pp.
745
756
.
15.
Willman
,
L.
, and
Krarti
,
M.
,
2013
, “
Optimization of Hybrid Distributed Generation Systems for Rural Communities in Alaska
,”
Distrib. Gener. Altern. Energy J.
,
28
(
4
), pp.
7
31
.
16.
Shaahid
,
S. M.
,
Al-Hadhrami
,
L. M.
, and
Rahman
,
M. K.
,
2014
, “
Review of Economic Assessment of Hybrid Photovoltaic-Diesel-Battery Power Systems for Residential Loads for Different Provinces of Saudi Arabia
,”
Renew. Sustain. Ener. Rev.
,
31
, pp.
174
181
.
17.
Mohamed
,
M. A.
,
Eltamaly
,
A. M.
, and
Alolah
,
A. I.
,
2015
, “
Sizing and Techno-Economic Analysis of Stand-Alone Hybrid Photovoltaic/Wind/Diesel/Battery Power Generation Systems
,”
Renew. Sustain. Ener.
7
(
6
), pp.
063128
.
18.
Elhadidy
,
M. A.
,
2002
, “
Performance Evaluation of Hybrid (Wind/Solar/Diesel) Power Systems
,”
Renew. Ener.
,
26
(
3
), pp.
401
413
.
19.
Ramli
,
M. A. M.
,
Bouchekara
,
H. R. E. H.
, and
Alghamdi
,
A. S.
,
2018
, “
Optimal Sizing of PV/Wind/Diesel Hybrid Microgrid System Using Multi-Objective Self-Adaptive Differential Evolution Algorithm
,”
Renew. Ener.
,
121
, pp.
400
411
.
20.
Ramli
,
M. A. M.
,
Twaha
,
S.
, and
Alghamdi
,
A. U.
,
2017
, “
Energy Production Potential and Economic Viability of Grid-Connected Wind/PV Systems at Saudi Arabian Coastal Areas
,”
J. Renew. Sustain. Ener.
,
9
(
6
), p.
65910
.
21.
Ameer
,
B.
, and
Krarti
,
M.
,
2017
, “
Design of Carbon-Neutral Residential Communities in Kuwait
,”
ASME J. Sol. Ener. Eng. Trans.
,
139
(
3
), pp.
1
12
.
22.
Central Department of Statistics and Information (CDSI)
,
2010
,
Detailed Results Population and Housing Census 1431 H
,
Kingdom of Saudi Arabia
,
Riyadh, Saudi Arabia
.
23.
Easter Region Municipality
,
2017
, “
Geographic Information Systems Explorer V 1.1.
http://webgis.eamana.gov.sa/gis/#/maps. Accessed January 4, 2018.
24.
The Department of Energy (DOE)
,
2016
, “
eQuest—the Quick Energy Simulation Tool.
http://www.doe2.com/equest/. Accessed January 4, 2018.
25.
Al-Otaibi
,
A.
,
Al-Qattan
,
A.
,
Fairouz
,
F.
, and
Al-Mulla
,
A.
,
2015
, “
Performance Evaluation of Photovoltaic Systems on Kuwaiti Schools’ Rooftop
,”
Energy Convers. Manage.
,
95
, pp.
110
119
.
26.
Baras
,
A.
,
Jones
,
R. K.
,
Alqahtani
,
A.
,
Alodan
,
M.
, and
Abdullah
,
K.
,
2017
, “
Measured Soiling Loss and Its Economic Impact for PV Plants in Central Saudi Arabia
,”
2016 Saudi Arabia Smart Grid Conference, SASG 2016
,
Jeddah, Saudi Arabia
,
Dec. 6–8
, pp.
1
7
.
27.
Shaahid
,
S. M.
, and
Elhadidy
,
M. A.
,
1994
, “
Wind and Solar Energy at Dhahran, Saudi Arabia
,”
Renew. Ener.
,
4
(
4
), pp.
441
445
.
28.
Touati
,
F.
,
Massoud
,
A.
,
Abu-Hamad
,
J.
, and
Saeed
,
S. A.
,
2013
, “
Effects of Environmental and Climatic Conditions on PV Efficiency in Qatar
,”
Renew. Ener. Power Qual. J.
,
1
(
11
), pp.
2762
2767
.
29.
Rehman
,
S.
, and
Ahmad
,
A.
,
2004
, “
Assessment of Wind Energy Potential for Coastal Locations of The Kingdom of Saudi Arabia
,”
Energy
,
29
(
8
), pp.
1105
1115
.
30.
HOMER Energy LLC
,
2017
, “
homer Energy
.” https://www.homerenergy.com/. Accessed January 4, 2018.
31.
Energy Information Administration (EIA)
,
2016
, “
Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants
.” Washington, DC.
32.
Ouda
,
O.
,
El-Nakla
,
S.
,
Chedly
,
Y. B.
,
Helen
,
P. P.
, and
Ouda
,
M.
,
2017
, “
Energy Conservation Awareness among Residential Consumers in Saudi Arabia
,”
Int. J. Comput.Dig. Syst.
,
6
(
6
), pp.
349
355
.
33.
Asif
,
M.
,
2016
, “
Growth and Sustainability Trends in the Buildings Sector in the GCC Region With Particular Reference to the KSA and UAE
,”
Renew. Sustain. Ener. Rev.
,
55
, pp.
1267
1273
.
34.
Krarti
,
M.
,
Dubey
,
K.
, and
Howarth
,
N.
,
2017
, “
Evaluation of Building Energy Efficiency Investment Options for the Kingdom of Saudi Arabia
,”
Energy
,
134
, pp.
595
610
.
35.
Ameer
,
B.
, and
Krarti
,
M.
,
2016
, “
Impact of Subsidization on High Energy Performance Designs for Kuwaiti Residential Buildings
,”
Energy Build.
,
116
, pp.
249
262
.
36.
Waier
,
P. R.
,
2011
,
RSMeans Building Construction Cost Data 2012
,
RSMeans
,
Norwell, MA
.
37.
Rodrigues
,
F.
,
Matos
,
R.
,
Alves
,
A.
,
Ribeirinho
,
P.
, and
Rodrigues
,
H.
,
2018
, “
Building Life Cycle Applied to Refurbishment of a Traditional Building From Oporto, Portugal
,”
J. Build. Eng.
,
17
, pp.
84
95
.
38.
Dehwah
,
A. H. A.
, and
Asif
,
M.
,
2019
, “
Assessment of net Energy Contribution to Buildings by Rooftop Photovoltaic Systems in Hot-Humid Climates
,”
Renewable Energy
,
131
, pp.
1288
1299
.
39.
Ramli
,
M. A. M.
,
Twaha
,
S.
, and
Al-Hamouz
,
Z.
,
2017
, “
Analyzing the Potential and Progress of Distributed Generation Applications in Saudi Arabia: The Case of Solar and Wind Resources
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
287
297
.
40.
Randall
,
T.
,
2016
,
World Energy Hits a Turning Point: Solar That’s Cheaper Than Wind
,
Bloomberg
,
New York
.
41.
International Energy Agency (IEA)
,
2017
, “
Renewables 2017: Analysis and Forecasts to 2022
.”
You do not currently have access to this content.