This paper presents characterization of a new high flux solar simulator consisting of a 10 kW Xenon arc via indirect heat flux mapping technique for solar thermochemical applications. The method incorporates the use of a heat flux gauge (HFG), single Lambertian target, complementary metal oxide semiconductor (CMOS) camera, and three-axis optical alignment assembly. The grayscale values are correlated to heat flux values for faster optimization and characterization of the radiation source. Unlike previous work in heat flux characterization that rely on two Lambertian targets, this study implements the use of a single target to eliminate possible errors due to interchanging the targets. The current supplied to the simulator was varied within the range of 120–200 A to change the total power and to mimic the fluctuation in sun's irradiance. Several characteristic parameters of the simulator were studied, including the temporal instability and radial nonuniformity (RNU). In addition, a sensitivity analysis was performed on the number of images captured, which showed a threshold value of at least 30 images for essentially accurate results. The results showed that the flux distribution obtained on a 10 × 10 cm2 target had a peak flux of 6990 kWm−2, total power of 3.49 kW, and half width of 6.25 mm. The study concludes with the illustration and use of a new technique, the merging method, that allows characterization of heat flux distributions on larger areas, which is a promising addition to the present heat flux characterization techniques.

References

1.
Ekman
,
B. M.
,
Brooks
,
G.
, and
Rhamdhani
,
M. A.
,
2016
, “
Development of High Flux Solar Simulators for Solar Thermal Research
,”
Energy Technol.
,
141
, pp.
149
159
.
2.
Gallo
,
A.
,
Marzo
,
A.
,
Fuentealba
,
E.
, and
Alonso
,
E.
,
2017
, “
High Flux Solar Simulators for Concentrated Solar Thermal Research: A Review
,”
Renew. Sustain. Energy Rev
,
77
, pp.
1385
1402
.
3.
Dong
,
X.
,
Sun
,
Z.
,
Nathan
,
G. J.
,
Ashman
,
P. J.
, and
Gu
,
D.
,
2015
, “
Time-Resolved Spectra of Solar Simulators Employing Metal Halide and Xenon Arc Lamps
,”
Sol. Energy
,
115
, pp.
613
620
.
4.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
5.
Siegel
,
N. P.
,
Drive
,
D.
,
Roba
,
J. P.
, and
Drive
,
D.
,
2018
, “
Design, Modeling, and Characterization of a 10 kWe Metal Halide High Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
140
(4), p. 045001.
6.
Wang
,
W.
,
Aichmayer
,
L.
,
Garrido
,
J.
, and
Laumert
,
B.
,
2017
, “
Development of a Fresnel Lens Based High-Flux Solar Simulator
,”
Sol. Energy
,
144
, pp.
436
444
.
7.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 kW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p. 125107.
8.
Levêque
,
G.
,
Bader
,
R.
,
Lipiński
,
W.
, and
Haussener
,
S.
,
2016
, “
Experimental and Numerical Characterization of a New 45 kWel Multisource High-Flux Solar Simulator
,”
Opt. Express
,
24
(
22
), pp.
1360
1373
.
9.
Martínez-Manuel
,
L.
,
Peña-Cruz
,
M. I.
,
Villa-Medina
,
M.
,
Ojeda-Bernal
,
C.
,
Prado-Zermeño
,
M.
,
Prado-Zermeño
,
I.
,
Pineda-Arellano
,
C. A.
,
Carrillo
,
J. G.
,
Salgado-Tránsito
,
I.
, and
Martell-Chavez
,
F.
,
2018
, “
A 17.5 kWel High Flux Solar Simulator With Controllable Flux-Spot Capabilities: Design and Validation Study
,”
Sol. Energy
,
170
, pp.
807
819
.
10.
Ophoff
,
C.
,
Korotunov
,
S.
, and
Ozalp
,
N.
,
2017
, “
Optimization of Design and Process Parameters for Maximized and Stable Solar Receiver Efficiency
,”
Second Thermal and Fluid Engineering Conference
, Las Vegas, NV, Apr. 2–5, Paper No.
TFEC-IWHT2017-18225
.http://dl.astfe.org/conferences/tfec2017,0fcf501f23695cf9,025e77c40ef3cfc8.html
11.
Kuhn
,
P.
, and
Hunt
,
A.
,
1991
, “
A New Solar Simulator to Study High Temperature Solid-State Reactions With Highly Concentrated Radiation
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
742
750
.
12.
Li
,
J.
,
Gonzalez-Aguilar
,
J.
,
Pérez-Rábago
,
C.
, and
Zeaiter
,
H.
,
2014
, “
Optical Analysis of a Hexagonal 42kWe High-Flux Solar Simulator
,”
Energy Procedia
,
57
, pp.
590
596
.
13.
Wieghardt
,
K.
,
Funken
,
K.-H.
,
Dibowski
,
G.
,
Hoffschmidt
,
B.
,
Laaber
,
D.
,
Hilger
,
P.
, and Eßer,
2016
, “
SynLight—The World's Largest Artificial Sun
,”
AIP Conf. Proc.
,
1734
, p.
030038
.
14.
Sarwar
,
J.
,
Georgakis
,
G.
,
LaChance
,
R.
, and
Ozalp
,
N.
,
2014
, “
Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications
,”
Sol. Energy
,
100
, pp.
179
194
.
15.
Gomez-Garcia
,
F.
,
Gonzalez-Aguilar
,
J.
, and
Romero
,
M.
,
2011
, “
Experimental 3D Flux Distribution of a 7 kWe Solar Simulator
,”
17th SolarPACES Conference
, Granada, Spain, Sept. 20–23.
16.
Alonso
,
E.
, and
Romero
,
M.
,
2015
, “
A Directly Irradiated Solar Reactor for Kinetic Analysis of Non-Volatile Metal Oxides Reductions
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1217
1228
.
17.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
,
2008
, “
Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2189
2199
.
18.
Krueger
,
K.
,
Davidson
,
J. H.
, and
Lipíñskí
,
W.
,
2011
, “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
ASME J. Sol. Energy Eng.
,
133
(1), p. 011013.
19.
Erickson
,
B. M.
,
2012
, “
Characterization of the University of Florida Solar Simulator and an Inverse Solution for Identifying Intensity Distributions From Multiple Flux Maps in Concentrating Solar Applications
,” Master thesis, University of Florida, Gainesville, FL.
20.
Moss
,
R. W.
,
Shire
,
G. S. F.
,
Eames
,
P. C.
,
Henshall
,
P.
,
Hyde
,
T.
, and
Arya
,
F.
,
2018
, “
Design and Commissioning of a Virtual Image Solar Simulator for Testing Thermal Collectors
,”
Sol. Energy
,
159
, pp.
234
242
.
21.
Esen
,
V.
,
Sa
,
Ş.
, and
Oral
,
B.
,
2017
, “
Light Sources of Solar Simulators for Photovoltaic Devices: A Review
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
1240
1250
.
22.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
044501
.
23.
Ballestrín
,
J.
,
Ulmer
,
S.
,
Morales
,
A.
,
Barnes
,
A.
,
Langley
,
L. W.
, and
Rodríguez
,
M.
,
2003
, “
Systematic Error in the Measurement of Very High Solar Irradiance
,”
Sol. Energy Mater. Sol. Cells
,
80
(
3
), pp.
375
381
.
24.
ASTM,
2005
, “
Standard Specification for Solar Simulators for Photovoltaic Testing
,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM-E927-05.
25.
IEC,
2007
, “
International Electrotechnical Commission Standard for Solar Simulator Performance Requirements
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC-60904-9.
26.
Krueger
,
K. R.
,
2012
, “
Design and Characterization of a Concentrating Solar Simulator
,” Ph.D. dissertation, University of Minnesota, Minneapolis, MN.
27.
IREM SpA
,
2018
, “
Installation and Operational Manual: EX-200GM3
,” Installation Manual MAN01524E/2, Torino, Italy.
28.
Ballestrin
,
J.
,
Estrada
,
C. A.
,
Rodríguez-Alonso
,
M.
,
Pérez-Rábago
,
C.
,
Langley
,
L. W.
, and
Barnes
,
A.
,
2006
, “
Heat Flux Sensors: Calorimeters or Radiometers?
,”
Sol. Energy
,
80
, pp.
1314
1320
.
29.
Guillot
,
E.
,
Alxneit
,
I.
,
Ballestrin
,
J.
,
Sans
,
J. L.
, and
Willsh
,
C.
,
2014
, “
Comparison of 3 Heat Flux Gauges and a Water Calorimeter for Concentrated Solar Irradiance Measurement
,”
Energy Procedia
,
49
, pp.
2090
2099
.
30.
Schwarz
,
B.
,
Ritt
,
G.
,
Koerber
,
M.
, and
Eberle
,
B.
,
2017
, “
Laser-Induced Damage Threshold of Camera Sensors and Micro-Opto-electro-mechanical Systems
,”
Opt. Eng.
,
56
(
3
), p. 034108.
31.
Rowe
,
S. C.
,
Wallace
,
M. A.
,
Lewandowski
,
A.
,
Fisher
,
R. P.
,
Cravey
,
W. R.
,
Clough
,
D. E.
,
Hischier
,
I.
, and
Weimer
,
A. W.
,
2017
, “
Experimental Evidence of an Observer Effect in High-Flux Solar Simulators
,”
Sol. Energy
,
158
, pp.
889
897
.
32.
Strong Lighting,
2017
, “
Xenon 10,000 Solar Simulator
,” User Manual, Strong Lighting, La Vista, NE.
33.
ANSI/NCSL
,
1997
, “
American National Standard for Expressing Uncertainty—U.S. Guide to the Expression of Uncertainty in Measurement
,” NCSL International, Boulder, CO, Standard No. ANSI/NCSL-Z540-2-1997.
You do not currently have access to this content.