This paper deals with the enhancement in exergoeconomic and enviroeconomic parameters for single-slope solar still by incorporating N identical partially covered photovoltaic thermal (PVT) collectors. Three cases: (a) single slope solar still incorporating N identical partially covered PVT flat plate collectors (FPC) (N-PVT-FPC-SS), (b) single slope solar still incorporating N identical partially covered PVT compound parabolic concentrator collectors (N-PVT-CPC-SS), and (c) conventional single slope solar still (CSSSS) have been taken to assess the improvement in various parameters. The various parameters have been computed at 0.14 m water depth, selected values of mass flow rate, and number of collectors considering four climatic conditions of New Delhi for each month of year. It has been concluded that N-PVT-FPC-SS performs best followed by N-PVT-CPC-SS and CSSSS on the basis of exergoeconomic and enviroeconomic parameters; however, CSSSS performs better than N-PVT-FPC-SS and N-PVT-CPC-SS on the basis of productivity measured in terms of ratio of monetary value of output and input. The kWh per unit cost based on exergoeconomic parameter is higher by 45.11% and 47.37%; environmental cost is higher by 65.74% and 90.02%; however, the output per unit input based on productivity is higher by 12.09% and lower by 26.83% for N-PVT-FPC-SS than N-PVT-CPC-SS and CSSSS, respectively.

References

1.
Rai
,
S. N.
, and
Tiwari
,
G. N.
,
1983
, “
Single Basin Solar Still Coupled With Flat Plate Collector
,”
Energy Convers. Manage.
,
23
(
3
), pp.
145
149
.
2.
Zaki
,
G. M.
,
Dali
,
T. E.
, and
Shafie
,
H. E.
,
1983
, “
Improved Performance of Solar Still
,”
First Arab International Solar Energy Conference, Kuwait
, Dec. 2–8, pp.
331
335
.
3.
Yadav
,
Y. P.
, and
Yadav
,
S. K.
,
2004
, “
Parametric Studies on the Transient Performance of a High Temperature Solar Distillation System
,”
Desalination
,
170
(
3
), pp.
251
262
.
4.
Badran
,
O. O.
, and
Al-Tahaineh
,
H. A.
,
2004
, “
The Effect of Coupling Flat Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(1–3), pp.
137
142
.
5.
Abdel-Rehim
,
Z. S.
, and
Lasheen
,
A.
,
2007
, “
Experimental and Theoretical Study of a Solar Desalination System Located in Cairo, Egypt
,”
Desalination
,
217
(
1–3
), pp.
52
64
.
6.
Tripathi
,
R.
, and
Tiwari
,
G. N.
,
2005
, “
Effect of Water Depth on Internal Heat and Mass Transfer for Active Solar Distillation
,”
Desalination
,
173
(
2
), pp.
187
200
.
7.
Badran
,
A. A.
,
Al-Hallaq
,
A. A.
,
Eyal Salman
,
I. A.
, and
Odat
,
M. Z.
,
2005
, “
A Solar Still Augmented With a Flat-Plate Collector
,”
Desalination
,
172
(3), pp.
227
234
.
8.
Taghvaei
,
H.
,
Taghvaei
,
H.
, Jafarpur, K., Karimi Estahbanati, M. R., Feilizadeh, M., Feilizadeh, M., and Ardekani, A. S.,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
9.
El-Sebaii
,
A. A.
,
Yaghmour
,
S. J.
,
Al-Hazmi
,
F. S.
,
Faidah
,
A. S.
,
Al-Marzouki
,
F. M.
, and
Al-Ghamdi
,
A. A.
,
2009
, “
Active Single Basin Solar Still With a Sensible Storage Medium
,”
Desalination
,
249
(
2
), pp.
699
706
.
10.
Arslan
,
M.
,
2012
, “
Experimental Investigation of Still Performance for Different Active Solar Still Designs Under Closed Cycle Mode
,”
Desalination
,
307
, pp.
9
19
.
11.
Lilian
,
M.
,
George
,
M. A.
, and
Al-Hindi
,
M.
,
2014
, “
The Effect of Cover Geometry on the Productivity of a Modified Solar Still Desalination Unit
,”
Energy Procedia
,
50
, pp.
406
413
.
12.
Rajaseenivasana
,
T.
,
Nelson
,
P.
, and
Srithar
,
K.
,
2014
, “
An Experimental Investigation on a Solar Still With an Integrated Flat Plate Collector
,”
Desalination
,
347
, pp.
131
137
.
13.
Hamadou
,
O. A.
, and
Abdellatif
,
K.
,
2014
, “
Modeling an Active Solar Still for Sea Water Desalination Process Optimization
,”
Desalination
,
354
, pp.
1
8
.
14.
Calise
,
F.
,
d'Accadia
,
M. D.
, and
Piacentino
,
A.
,
2014
, “
A Novel Solar Trigeneration System Integrating PVT (Photovoltaic/Thermal Collectors) and SW (Seawater) Desalination: Dynamic Simulation and Economic Assessment
,”
Energy
,
67
, pp.
129
148
.
15.
Kern
,
E. C.
, and
Russell
,
M. C.
,
1978
, “
Combined Photovoltaic and Thermal Hybrid Collector Systems
,”
13th Photovoltaic Specialists Conference
, Washington, DC, June 5–8, pp.
1153
1157
.http://adsabs.harvard.edu/abs/1978pvsp.conf.1153K
16.
Hendrie
,
S. D.
,
1979
, “
Evaluation of Combined Photovoltaic/Thermal Collectors
,”
International Conference ISES
, Atlanta, GA, Vol.
3
, May 28–June 1, pp.
1865
1869
.http://adsabs.harvard.edu/abs/1979sun2.conf.1865H
17.
Kumar
,
S.
, and
Tiwari
,
A.
,
2008
, “
An Experimental Study of Hybrid Photovoltaic Thermal (PV/T) Active Solar Still
,”
Int. J. Energy Res.
,
32
(
9
), pp.
847
858
.
18.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Estimation of Internal Heat Transfer Coefficients of a Hybrid (PV/T) Active Solar Still
,”
Sol. Energy
,
83
(
9
), pp.
1656
1667
.
19.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Life Cycle Cost Analysis of Single Slope Hybrid (PV/T) Active Solar Still
,”
Appl. Energy
,
86
(10), pp.
1995
2004
.
20.
Kumar
,
S.
, and
Tiwari
,
A.
,
2010
, “
Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PVT) Active Solar Still
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1219
1229
.
21.
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Gaur
,
M. K.
,
2010
, “
Development of Empirical Relation to Evaluate the Heat Transfer Coefficients and Fractional Energy in Basin Type Hybrid (PVT) Active Solar Still
,”
Desalination
,
250
(1), pp.
214
221
.
22.
Singh
,
G.
,
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2011
, “
Design, Fabrication and Performance of a Hybrid Photovoltaic/Thermal (PVT) Double Slope Active Solar Still
,”
Desalination
,
277
(
1–3
), pp.
399
406
.
23.
Tiwari
,
G. N.
,
Yadav
,
J. K.
,
Singh
,
D. B.
,
Al-Helal
,
I. M.
, and
Abdel-Ghany
,
A. M.
,
2015
, “
Exergoeconomic and Enviroeconomic Analyses of Partially Covered Photovoltaic Flat Plate Collector Active Solar Distillation System
,”
Desalination
,
367
, pp.
186
196
.
24.
Singh
,
D. B.
,
Yadav
,
J. K.
,
Dwivedi
,
V. K.
,
Kumar
,
S.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Experimental Studies of Active Solar Still Integrated With Two Hybrid PVT Collectors
,”
Sol. Energy
,
130
, pp.
207
223
.
25.
Gaur
,
M. K.
, and
Tiwari
,
G. N.
,
2010
, “
Optimization of Number of Collectors for Integrated PV/T Hybrid Active Solar Still
,”
Appl. Energy
,
87
(
5
), pp.
1763
1772
.
26.
Eltawil
,
M. A.
, and
Omara
,
Z. M.
,
2014
, “
Enhancing the Solar Still Performance Using Solar Photovoltaic, Flat Plate Collector and Hot Air
,”
Desalination
,
349
, pp.
1
9
.
27.
Saeedi
,
F.
,
Sarhaddi
,
F.
, and
Behzadmehr
,
A.
,
2015
, “
Optimization of a PV/T (Photovoltaic/Thermal) Active Solar Still
,”
Energy
,
87
, pp.
142
152
.
28.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Energy Matrices on Life Cycle Cost Analysis of Partially Covered Photovoltaic Compound Parabolic Concentrator Collector Active Solar Distillation System
,”
Desalination
,
397
, pp.
75
91
.
29.
Singh
,
D. B.
,
Tiwari
,
G. N.
,
Al-Helal
,
I. M.
,
Dwivedi
,
V. K.
, and
Yadav
,
J. K.
,
2016
, “
Effect of Energy Matrices on Life Cycle Cost Analysis of Passive Solar Stills
,”
Sol. Energy
,
134
, pp.
9
22
.
30.
Tiwari
,
G. N.
,
2002
,
Solar Energy, Fundamentals, Design, Modeling and Application
,
Narosa Publishing House
,
New Delhi, India
.
31.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Analysis of PV/T Flat Plate Water Collectors Connected in Series
,”
Sol. Energy
,
83
(
9
), pp.
1485
1498
.
32.
Shyam, Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2015
, “
Analytical Expression of Temperature Dependent Electrical Efficiency of N-PVT Water Collectors Connected in Series
,”
Sol. Energy
,
114
, pp.
61
76
.
33.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting PV Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
34.
Schott
,
T.
,
1985
, “
Operational Temperatures of PV Modules
,”
Sixth PV Solar Energy Conference
, London, Apr. 15–19, pp.
392
396
.
35.
Atheaya
,
D.
,
Tiwari
,
A.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2015
, “
Analytical Characteristic Equation for Partially Covered Photovoltaic Thermal (PVT)—Compound Parabolic Concentrator (CPC)
,”
Sol. Energy
,
111
, pp.
176
185
.
36.
Tripathi
,
R.
,
Tiwari
,
G. N.
, and
Al-Helal
,
I. M.
,
2016
, “
Thermal Modelling of N Partially Covered Photovoltaic Thermal (PVT)–Compound Parabolic Concentrator (CPC) Collectors Connected in Series
,”
Sol. Energy
,
123
, pp.
174
184
.
37.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), p.
469
.
38.
Nag
,
P. K.
,
2004
,
Basic and Applied Thermodynamics
,
Tata McGraw-Hill
, New Delhi, India.
39.
Fernandez
,
J.
, and
Chargoy
,
N.
,
1990
, “
Multistage Indirectly Heated Solar Still
,”
Sol. Energy
,
44
(
4
), p.
215
.
40.
Toyama
,
S.
, and
Kagakuv
,
K.
,
1972
, “Gijitsu, 24, 159,” Maruzen, Tokyo, Japan.
41.
Huang
,
B. J.
,
Lin
,
T. H.
,
Hung
,
W. C.
, and
Sun
,
F. S.
,
2001
, “
Performance Evaluation of Solar Photovoltaic/Thermal Systems
,”
Sol. Energy
,
70
(
5
), pp.
443
448
.
42.
Tsatsaronis
,
G.
,
Lin
,
L.
, and
Pisa
,
J.
,
1993
, “
Exergy Costing in Exergoeconomics
,”
ASME J. Energy Resour. Technol.
,
115
(
1
), pp.
9
16
.
43.
Ozgener
,
O.
, and
Hepbasli
,
A.
,
2005
, “
Exergoeconomic Analysis of a Solar Assisted Ground Source Heat Pump Greenhouse Heating System
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1459
1471
.
44.
Tsatsaronis
,
G.
, and
Winhold
,
M.
,
1985
, “
Exergoeconomic Analysis and Evaluation of Energy Conversion Plants—A New General Methodology
,”
Energy
,
10
(
1
), pp.
69
94
.
45.
D'Accadia
,
M. D.
, and
de Rossi
,
F.
,
1998
, “
Thermo Economic Optimization of a Refrigeration Plant
,”
Int. J. Refrig.
,
21
(1), pp.
42
54
.
46.
Kwon
,
Y. H.
,
Kwak
,
H. Y.
, and
Oh
,
S. D.
,
2001
, “
Exergoeconomic Analysis of Gas Turbine Cogeneration Systems
,”
Exergy
,
1
(
1
), pp.
31
40
.
47.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Exergoeconomic Analysis of Power Plants Operating on Various Fuels
,”
Appl. Therm. Eng.
,
23
(6), pp.
643
658
.
48.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Thermoeconomic Analysis of Power Plants: An Application to a Coal-Red Electrical Generating Station
,”
Energy Convers. Manage.
,
44
(10), pp.
1633
1651
.
49.
Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., and Carassai, A., 2012, “
Advanced Exergoeconomic Analysis Applied to a Complex Energy Conversion System
,”
ASME J. Eng. Gas Turbines Power
,
134
(3), p. 031801.
50.
Ozgener
,
L.
, and
Ozgener
,
O.
,
2009
, “
Monitoring of Energy Exergy Efficiencies and Exergoeconomic Parameters of Geothermal District Heating Systems (GDHSs)
,”
Appl. Energy
,
86
(
9
), pp.
1704
1711
.
51.
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2012
, “
Exergoeconomic Analysis of Glazed Hybrid Photovoltaic Thermal Module Air Collector
,”
Sol. Energy
,
86
(
9
), pp.
2826
2838
.
52.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Exergoeconomic, Enviroeconomic and Sustainability Analyses of a Novel Air Cooler
,”
Energy Build.
,
55
, pp.
747
756
.
53.
Sovacool
,
B. K.
,
2008
, “
Valuing the Greenhouse Gas Emissions From Nuclear Power: A Critical Survey
,”
Energy Policy
,
36
(
8
), pp.
2940
2953
.
54.
Den Elzen
,
M. G. J.
,
Hof
,
A. F.
, and
Beltran
,
A. M.
,
2011
, “
The Copenhagen Accord: Abatement Costs and Carbon Prices Resulting From the Submissions
,”
Environ. Sci. Policy
,
14
(
1
), pp.
28
39
.
55.
Ashcroft
,
H.
,
1950
, “
The Productivity of Several Machines Under the Care of One Operator
,”
J. Roy. Stat. Soc. (Lond.) Ser. B
,
XII
(1), pp.
145
151
.https://www.jstor.org/stable/pdf/2983840.pdf?seq=1#page_scan_tab_contents
56.
Benson
,
F.
,
1952
, “
Further Notes on the Productivity of Machines Requiring Attention at Random Intervals
,”
J. Roy. Stat. Soc. Ser. B
,
XIV
(2), pp.
200
210
.http://www.jstor.org/stable/pdf/2983868.pdf?seq=1#page_scan_tab_contents
57.
Cox
,
D. R.
,
1951
, “
The Productivity of Machines Requiring Attention at Random Intervals
,”
J. Roy. Stat. Soc. Ser. B
,
XIII
(1), pp.
65
82
.https://www.jstor.org/stable/2983968?seq=1#page_scan_tab_contents
58.
International Labor Office
,
1979
,
Introduction to Work Study
,
International Labor Organization
,
Geneva, Switzerland
.
You do not currently have access to this content.