The possibility of a wind turbine entering vortex ring state (VRS) during pitching oscillations is explored in this paper. The work first validated the employed computational fluid dynamics (CFD) method, and continued with computations at fixed yaw of the NREL phase VI wind turbine. The aerodynamic performance of the rotor was computed using the helicopter multiblock (HMB) flow solver. This code solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. With confidence on the established method, yawing and pitching oscillations were performed suggesting partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

References

1.
Corbetta
,
G.
, and
Mbistrova
,
A.
,
2015
, “
The European Offshore Wind Industry—Key Trends and Statistics 2014
,” European Wind Energy Association (EWEA), Brussels, Belgium,
Technical Report
.
2.
Ho
,
A.
, and
Mbistrova
,
A.
,
2015
, “
The European Offshore Wind Industry—Key Trends and Statistics 1st Half 2015
,” European Wind Energy Association (EWEA), Brussels, Belgium,
Technical Report
.
3.
Corbetta
,
G.
,
Ho
,
A.
,
Pineda
,
I.
,
Ruby
,
K.
,
Van de Velde
,
L.
, and
Bickley
,
J.
,
2015
, “
Wind Energy Scenarios for 2030
,” European Wind Energy Association (EWEA), Brussels, Belgium,
Technical Report
.
4.
Fried
,
L.
,
Qiao
,
L.
,
Sawyer
,
S.
,
Shukla
,
S.
, and
Bitter
,
L.
,
2014
, “
Global Wind Report 2014: Annual Market Update
,” Global Wind Energy Council (GWEC), Brussels, Belgium,
Technical Report
.
5.
Arapogianni
,
A.
,
Genachte
,
A.-B.
,
Ochagavia
,
R. M.
,
Vergara
,
J. P.
,
Castell
,
D.
,
Tsouroukdissian
,
A. R.
,
Korbijn
,
J.
,
Bolleman
,
N. C.
,
Huera-Huarte
,
F. J.
,
Schuon
,
F.
,
Ugarte
,
A.
,
Sandberg
,
J.
,
de Laleu
,
V.
,
Maciel
,
J.
,
Tunbjer
,
A.
,
Roth
,
R.
,
de la Gueriviere
,
P.
,
Coulombeau
,
P.
,
Jedrec
,
S.
,
Philippe
,
C.
,
Voutsinas
,
S.
,
Weinstein
,
A.
,
Vita
,
L.
,
Byklum
,
E.
,
Hurley
,
W. L.
, and
Grubel
,
H.
,
2013
, “
Deep Water—The Next Step for Offshore Wind Energy
,” European Wind Energy Association (EWEA), Brussels, Belgium,
Technical Report
.
6.
Sebastian
,
T.
, and
Lackner
,
M. A.
,
2011
, “
Offshore Floating Wind Turbines—An Aerodynamic Perspective
,”
AIAA
Paper No. 2011-720.
7.
Larsen
,
T. J.
, and
Hanson
,
T. D.
,
2007
, “
A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine
,”
J. Phys.: Conf. Ser.
,
75
, p. 012073.
8.
Jonkman
,
J.
,
2008
, “
Influence of Control on the Pitch Damping of a Floating Wind Turbine
,”
AIAA
Paper No. 2008-1306.
9.
Nielsen
,
F.
,
Hanson
,
T.
, and
Skaare
,
B.
,
2008
, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbines
,”
ASME
Paper No. OMAE2006-92291.
10.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure With a Downwind Turbine
,”
European Wind Energy Conference
(
EWEC
), Brussels, Belgium, Mar. 14–17, pp. 97–101.
11.
Iino
,
M.
,
Chujo
,
T.
,
Iida
,
M.
, and
Arakawa
,
C.
,
2012
, “
Effect of Forced Excitation on Wind Turbine With Dynamic Analysis in Deep Offshore Wind in Addition to Japanese Status of Offshore Projects
,”
Energy Proc.
,
24
, pp.
11
17
.
12.
Koyanagi
,
T.
,
Karikomi
,
K.
,
Iwasaki
,
S.
, and
Nakamura
,
A.
,
2015
, “
Stability Analysis of Floating Wind Turbine Using 1/64 Scale Model
,” 12th German Wind Energy Conference (
DEWEK 2015
), Bremen, Germany, May 19–20.
13.
Hansen
,
A. C.
, and
Cui
,
X.
,
1989
, “
Analysis and Observations of Wind Turbine Yaw Dynamics
,”
ASME J. Sol. Energy Eng.
,
111
(
4
), pp.
367
371
.
14.
Madsen
,
H. A.
,
Sorensen
,
N. N.
, and
Schreck
,
S.
,
2003
, “
Yaw Aerodynamics Analyzed With Three Codes in Comparison With Experiment
,”
ASME
Paper No. WIND2003-519.
15.
Le Pape
,
A.
, and
Gleize
,
V.
,
2006
, “
Improved Navier–Stokes Computations of a Stall-Regulated Wind Turbine Using Low Mach Number Preconditioning
,”
AIAA
Paper No. 2006-1502.
16.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report No.
NREL/TP-500-29955
.
17.
Jeong
,
M.-S.
,
Kim
,
S.-W.
,
Lee
,
I.
,
Yoo
,
S.-J.
, and
Park
,
K.
,
2013
, “
The Impact of Yaw Error on Aeroelastic Characteristics of a Horizontal Axis Wind Turbine Blade
,”
Renewable Energy
,
60
, pp.
256
268
.
18.
Xu
,
B. F.
,
Wang
,
T. G.
,
Yuan
,
Y.
, and
Cao
,
J. F.
,
2015
, “
Unsteady Aerodynamic Analysis for Offshore Floating Wind Turbines Under Different Wind Conditions
,”
Philos. Trans. R. Soc., A
,
373
(
2035
), p. 20140080.
19.
Snel
,
H.
, and
Schepers
,
J.
,
1995
, “
Joint Investigation of Dynamic Inflow Effects and Implementation of an Engineering Method
,” Energy Research Center of the Netherlands (ECN), Petten, The Netherlands, Technical Report No.
ECN-C-94-107
.
20.
Qiu
,
Y.-X.
,
Wang
,
X.-D.
,
Kang
,
S.
,
Zhao
,
M.
, and
Liang
,
J.-Y.
,
2014
, “
Predictions of Unsteady HAWT Aerodynamics in Yawing and Pitching Using the Free Vortex Method
,”
Renewable Energy
,
70
, pp.
93
106
.
21.
Jeon
,
M.
,
Lee
,
S.
, and
Lee
,
S.
,
2014
, “
Unsteady Aerodynamics of Offshore Floating Wind Turbines in Platform Pitching Motion Using Vortex Lattice Method
,”
Renewable Energy
,
65
, pp.
207
212
.
22.
Sant
,
T.
, and
Cuschieri
,
K.
,
2016
, “
Comparing Three Aerodynamic Models for Predicting the Thrust and Power Characteristics of a Yawed Floating Wind Turbine Rotor
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
031004
.
23.
Tran
,
T.
, and
Kim
,
D.
,
2015
, “
The Aerodynamic Interference Effects of a Floating Offshore Wind Turbine Experiencing Platform Pitching and Yawing Motions
,”
J. Mech. Sci. Technol.
,
29
(
2
), pp.
549
561
.
24.
Tran
,
T.-T.
, and
Kim
,
D.-H.
,
2015
, “
The Platform Pitching Motion of Floating Offshore Wind Turbine: A Preliminary Unsteady Aerodynamic Analysis
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
65
81
.
25.
Rockel
,
S.
,
Camp
,
E.
,
Schmidt
,
J.
,
Peinke
,
J.
,
Cal
,
R. B.
, and
Hölling
,
M.
,
2014
, “
Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model
,”
Energies
,
7
(
4
), pp.
1954
1985
.
26.
Brocklehurst
,
A.
,
Steijl
,
R.
, and
Barakos
,
G.
,
2008
, “
CFD for Tail Rotor Design and Evaluation
,”
34th European Rotorcraft Forum
(
ERF
), Liverpool, UK, Sept. 16–19, pp. 846–866.
27.
Bak
,
C.
,
Zhale
,
F.
,
Bitsche
,
R.
,
Kim
,
T.
,
Yde
,
A.
,
Henriksen
,
L. C.
,
Andersen
,
P. B.
,
Natarajan
,
A.
, and
Hansen
,
M. H.
,
2013
, “
Description of the DTU 10 MW Reference Wind Turbine
,” DTU Wind Energy, Roskilde, Denmark, Technical Report No. I-0092.
28.
Osher
,
S.
, and
Chakravarthy
,
S.
,
1983
, “
Upwind Schemes and Boundary Conditions With Applications to Euler Equations in General Geometries
,”
J. Comput. Phys.
,
50
(
3
), pp.
447
481
.
29.
Eisenstat
,
S. C.
,
Elman
,
H. C.
, and
Schultz
,
M. H.
,
1983
, “
Variational Iterative Methods for Nonsymmetric Systems of Linear Equations
,”
SIAM J. Numer. Anal.
,
20
(
2
), pp.
345
357
.
30.
Spalart
,
P. R.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First AFOSR International Conference on DNS/LES
, Ruston, LA, Aug. 4–8, pp. 137–147.
31.
Steijl
,
R.
, and
Barakos
,
G.
,
2008
, “
Sliding Mesh Algorithm for CFD Analysis of Helicopter Rotor-Fuselage Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
58
(
5
), pp.
527
549
.
32.
Jarkowski
,
M.
,
Woodgate
,
M. A.
,
Barakos
,
G. N.
, and
Rokicki
,
J.
,
2013
, “
Towards Consistent Hybrid Overset Mesh Methods for Rotorcraft CFD
,”
Int. J. Numer. Methods Fluids
,
74
(
8
), pp.
543
576
.
33.
Rieper
,
F.
,
2011
, “
A Low-Mach Number Fix for Roe’s Approximate Riemann Solver
,”
J. Comput. Phys.
,
230
(
13
), pp.
5263
5287
.
34.
Carrión
,
M.
,
Woodgate
,
M.
,
Steijl
,
R.
, and
Barakos
,
G.
,
2013
, “
Implementation of All-Mach Roe-Type Schemes in Fully Implicit CFD Solvers—Demonstration for Wind Turbine Flows
,”
Int. J. Numer. Methods Fluids
,
73
(
8
), pp.
693
728
.
35.
Gómez-Iradi
,
S.
,
Steijl
,
R.
, and
Barakos
,
G. N.
,
2009
, “
Development and Validation of a CFD Technique for the Aerodynamic Analysis of HAWT
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031009
.
36.
Carrión
,
M.
,
Steijl
,
R.
,
Woodgate
,
M.
,
Barakos
,
G.
,
Munduate
,
X.
, and
Gomez-Iradi
,
S.
,
2014
, “
Computational Fluid Dynamics Analysis of the Wake Behind the MEXICO Rotor in Axial Flow Conditions
,”
Wind Energy
,
18
(
6
), pp.
1023
1045
.
37.
Carrión
,
M.
,
Woodgate
,
M.
,
Steijl
,
R.
,
Barakos
,
G. N.
,
Gomez-Iradi
,
S.
, and
Munduate
,
X.
,
2015
, “
Understanding Wind-Turbine Wake Breakdown Using Computational Fluid Dynamics
,”
AIAA J.
,
53
(
3
), pp.
588
602
.
38.
Somers
,
D.
,
1997
, “
Design and Experimental Results for the S809 Airfoil
,” National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report No.
NREL/SR-440-6918
.
39.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
40.
Björck
,
A.
,
1990
, “
Coordinates and Calculations for the FFA-W1-xxx, FFA-W2-xxx and FFA-W3-xxx Series of Airfoils for Horizontal Axis Wind Turbines
,” The Aeronautical Research Institute of Sweden (FFA), Ulvsunda, Sweden, Technical Report No.
FFA TN 1990-15
.
41.
Leble
,
V.
, and
Barakos
,
G.
,
2016
, “
Demonstration of a Coupled Floating Offshore Wind Turbine Analysis With High-Fidelity Methods
,”
J. Fluids Struct.
,
62
, pp.
272
293
.
42.
Carrión
,
M.
,
Steijl
,
R.
,
Woodgate
,
M.
,
Barakos
,
G.
,
Munduate
,
X.
, and
Gomez-Iradi
,
S.
,
2014
, “
Aeroelastic Analysis of Wind Turbines Using a Tightly Coupled CFD-CSD Method
,”
J. Fluids Struct.
,
50
, pp.
392
415
.
43.
Dehaeze
,
F.
, and
Barakos
,
G.
,
2012
, “
Hovering Rotor Computations Using an Aeroelastic Blade Model
,”
Aeronaut. J.
,
116
(
1180
), pp.
621
649
.
44.
Dehaeze
,
F.
, and
Barakos
,
G. N.
,
2012
, “
Mesh Deformation Method for Rotor Flows
,”
J. Aircr.
,
49
(
1
), pp.
82
92
.
45.
Steijl
,
R.
,
Barakos
,
G.
, and
Badcock
,
K.
,
2006
, “
A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight
,”
Int. J. Numer. Methods Fluids
,
51
(
8
), pp.
819
847
.
46.
Gómez-Iradi
,
S.
,
2009
, “
CFD for Horizontal Axis Wind Turbines
,”
Ph.D. thesis
, University of Liverpool, Liverpool, UK.
47.
Peterson
,
E. W.
, and
Hennessey
,
J. P.
,
1978
, “
On the Use of Power Laws for Estimates of Wind Power Potential
,”
J. Appl. Meteorol.
,
17
(
3
), pp.
390
394
.
48.
ISO
,
1975
, “
Standard Atmosphere
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 2533:1975
.
49.
Horcas
,
S. G.
,
Debrabandere
,
F.
,
Tartinville
,
B.
,
Hirsch
,
C.
, and
Coussement
,
G.
,
2015
, “
Hybrid Mesh Deformation Tool for Offshore Wind Turbines Aeroelasticity Prediction
,”
CFD for Wind and Tidal Offshore Turbines
,
Springer International Publishing
,
Cham, Switzerland
, pp.
83
94
.
50.
Lee
,
W. T.
,
Bales
,
S. L.
, and
Sowby
,
S. E.
,
1985
,
Standardized Wind and Wave Environments for North Pacific Ocean Areas
,
David W. Taylor Naval Ship Research and Development Center
, Bethesda, MD.
51.
Schepers
,
J. G.
,
2012
, “
Engineering Models in Wind Energy Aerodynamics: Development, Implementation and Analysis Using Dedicated Aerodynamic Measurements
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
52.
Krogstad
,
P.-Å.
, and
Adaramola
,
M. S.
,
2012
, “
Performance and Near Wake Measurements of a Model Horizontal Axis Wind Turbine
,”
Wind Energy
,
15
(
5
), pp.
743
756
.
53.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2002
,
Wind Energy Handbook
,
Wiley
,
Chichester, UK
.
54.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Summer Program 1988
, Center for Turbulence Research, Stanford, CA, pp. 193–208.
55.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
56.
Rand
,
O.
,
2006
, “
A Phenomenological Modification for Glauert’s Classical Induced Velocity Equation
,”
J. Am. Helicopter Soc.
,
51
(
3
), pp.
279
282
.
57.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
58.
Bayati
,
I.
,
Belloli
,
M.
,
Facchinetti
,
A.
, and
Giappino
,
S.
,
2013
, “
Wind Tunnel Tests on Floating Offshore Wind Turbines: A Proposal for Hardware-in-the-Loop Approach to Validate Numerical Codes
,”
Wind Eng.
,
37
(
6
), pp.
557
568
.
You do not currently have access to this content.