Compared with recirculation and injection modes, once-through direct steam generation (DSG) parabolic troughs are simpler to construct and require the lowest investment. However, the heat transfer fluid (HTF) in once-through DSG parabolic trough systems has the most complicated dynamic behavior, particularly during periods of moving shadows caused by small clouds and jet contrails. In this paper, a nonlinear distributed parameter dynamic model (NDPDM) is proposed to model the dynamic behavior of once-through DSG parabolic trough solar collector row under moving shadow conditions. Compared with state-of-the-art models, the proposed NDPDM possesses three characteristics: (a) adopting real-time local values of the heat transfer and friction resistance coefficients, (b) simulating the whole collector row, including the boiler and the superheated sections, and (c) modeling the disturbance of direct normal irradiance (DNI) level on DSG parabolic trough solar collector row under moving shadow conditions. Validated using experimental data, the NDPDM accurately predicts the dynamic characteristics of HTF during periods of partial and moving DNI disturbance. The fundamental and specific dynamic process of fluid parameters for a DSG parabolic trough solar collector row is provided in this paper. The results show the following: (a) Moving shadows have a significant impact on the outlet temperature and mass flow rate, and the impact lasts up to 1000 s even after the shadows completely leave the collector row. (b) The time for outlet steam temperature to reach a steady-state value for the first time is independent of the shadow width, speed, and moving direction. (c) High-frequency chattering of the outlet mass flow rate can be observed under moving DNI disturbance and will have a longer duration if the shadow width is larger or the shadow speed is slower. Compared with cases in which the whole system is shaded, partially shading cases have shown a longer duration of high-frequency chattering. (d) Both wider widths and slower speeds of shadow will cause a larger amplitude of responses in the outlet temperature and mass flow rate. When the shadow speed is low, there is a longer delay time of response in the mass flow rate of the outlet fluid. (e) The amplitude of response in the outlet temperature does not depend on the direction of clouds movement. However, if the DNI disturbance starts at the inlet of the collector row, there will be significant delay times in both outlet temperature and mass flow rate, and a larger amplitude of response in outlet mass flow rate.

References

1.
Giostri
,
A.
,
Binotti
,
M.
,
Astolfi
,
M.
,
Silva
,
P.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2012
, “
Comparison of Different Solar Plants Based on Parabolic Trough Technology
,”
Sol. Energy
,
86
(
5
), pp.
1208
1221
.
2.
Giostri
,
A.
,
Binotti
,
M.
,
Silva
,
P.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2013
, “
Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011001
.
3.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E. F.
,
2005
, “
Control Concepts for Direct Steam Generation in Parabolic Troughs
,”
Sol. Energy
,
78
(
2
), pp.
301
311
.
4.
Zarza
,
E.
,
Valenzuela
,
L.
,
Leon
,
J.
,
Weyers
,
H. D.
,
Eickhoff
,
M.
,
Eck
,
M.
, and
Hennecke
,
K.
,
2002
, “
The DISS Project: Direct Steam Generation in Parabolic Trough Systems. Operation and Maintenance Experience and Update on Project Status
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
126
133
.
5.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behnia
,
M.
,
1998
, “
Modelling of Parabolic Trough Direct Steam Generation Solar Collectors
,”
Sol. Energy
,
62
(
6
), pp.
395
406
.
6.
Guo
,
S.
,
Liu
,
D.
,
Zhang
,
Y.
,
Xu
,
C.
, and
Wang
,
P.
,
2012
, “
Research on Control Strategy of Outlet Steam Temperature for DSG in Parabolic Troughs Solar Power Under Recirculation Operation Mode
,”
Proc. CSEE
,
32
(
20
), pp.
62
68
.
7.
Dagan
,
E.
,
Muller
,
M.
, and
Lippke
,
F.
,
1992
, “
Direct Steam Generation in the Parabolic Trough Collector
,” Plataform Solar de Almeria, Madrid, Spain.
8.
Lippke
,
F.
,
1996
, “
Direct Steam Generation in Parabolic Trough Solar Power Plants: Numerical Investigation of the Transients and the Control of a Once-Through System
,”
ASME J. Sol. Energy Eng.
,
118
(
1
), pp.
9
14
.
9.
Valenzuela
,
L.
,
Zarza
,
E.
,
Berenguel
,
M.
, and
Camacho
,
E. F.
,
2006
, “
Control Scheme for Direct Steam Generation in Parabolic Troughs Under Recirculation Operation Mode
,”
Sol. Energy
,
80
(
1
), pp.
1
17
.
10.
Odeh
,
S. D.
,
Behnia
,
M.
, and
Morrison
,
G. L.
,
2000
, “
Hydrodynamic Analysis of Direct Steam Generation Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
14
22
.
11.
Odeh
,
S. D.
,
Behnia
,
M.
, and
Morrison
,
G. L.
,
2003
, “
Performance Evaluation of Solar Thermal Electric Generation Systems
,”
Energy Convers. Manage.
,
44
(
15
), pp.
2425
2443
.
12.
Odeh
,
S. D.
,
2003
, “
Unified Model of Solar Thermal Electric Generation Systems
,”
Renewable Energy
,
28
(
5
), pp.
755
767
.
13.
Bonilla
,
J.
,
Yebra
,
L. J.
,
Dormido
,
S.
, and
Zarza
,
E.
,
2012
, “
Parabolic-Trough Solar Thermal Power Plant Simulation Scheme, Multi-Objective Genetic Algorithm Calibration and Validation
,”
Sol. Energy
,
86
(
1
), pp.
531
540
.
14.
Bonilla
,
J.
,
Yebra
,
L. J.
, and
Dormido
,
S.
,
2012
, “
Chattering in Dynamic Mathematical Two-Phase Flow Models
,”
Appl. Math. Modell.
,
36
(
5
), pp.
2067
2081
.
15.
Lobón
,
D. H.
,
Baglietto
,
E.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2014
, “
Modeling Direct Steam Generation in Solar Collectors With Multiphase CFD
,”
Appl. Energy
,
113
, pp.
1338
1348
.
16.
Feldhoff
,
J. F.
,
Hirsch
,
T.
,
Pitz-Paal
,
R.
, and
Valenzuela
,
L.
,
2015
, “
Transient Models and Characteristics of Once-Through Line Focus Systems
,”
Energy Proc.
,
69
, pp.
626
637
.
17.
Liang
,
Z.
,
Sun
,
L.
, and
You
,
C.
,
2009
, “
Dynamic Characteristics of DSG Solar Trough Collectors
,”
Acta Energiae Slaris Sin.
,
30
(
12
), pp.
1640
1646
.
18.
Liang
,
Z.
, and
You
,
C.
,
2009
, “
Dynamic Heat Transfer Characteristics of Parabolic Solar Trough Collectors
,”
Acta Energiae Slaris Sin.
,
30
(
4
), pp.
451
456
.
19.
Chu
,
Y.
,
Pedro
,
H. T.
,
Li
,
M.
, and
Coimbra
,
C. F.
,
2015
, “
Real-Time Forecasting of Solar Irradiance Ramps With Smart Image Processing
,”
Sol. Energy
,
114
, pp.
91
104
.
20.
Poellot
,
M. R.
,
1999
, “
In Situ Observations of Contrail Microphysics and Implications for Their Radiative Impact
,”
J. Geophys. Res.
,
104
(D10), pp.
12077
12084
.
21.
Eck
,
M.
, and
Hirsch
,
T.
,
2007
, “
Dynamics and Control of Parabolic Trough Collector Loops With Direct Steam Generation
,”
Sol. Energy
,
81
(
2
), pp.
268
279
.
22.
Guo
,
S.
,
2014
, “
Research on Modeling and Control of Thermal Process in Solar Trough Direct Steam Generation System
,” Ph.D. thesis, Southeast University, Nanjing, China.
23.
Inman
,
R. H.
,
Chu
,
Y.
, and
Coimbra
,
C. F. M.
,
2016
, “
Cloud Enhancement of Global Horizontal Irradiance in California and Hawaii
,”
Sol. Energy
,
130
, pp.
128
138
.
24.
Chu
,
Y.
,
Li
,
M.
, and
Coimbra
,
C. F. M.
,
2016
, “
Sun-Tracking Imaging System for Intra-Hour DNI Forecasts
,”
Renewable Energy
,
96
(Part A), pp.
792
799
.
25.
Dudley
,
V.
,
Kolb
,
G.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
SEGS LS2 Solar Collector—Test Results
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND-94-1884
.
26.
Zhang
,
C.
,
1987
,
Boiler Dynamic Behavior and Its Mathematic Model
,
Hydraulic and Electric Power Press
,
Beijing, China
.
27.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
296
.
28.
Eck
,
M.
,
Zarza
,
E.
,
Eickhoff
,
M.
,
Rheinlander
,
J.
, and
Valenzuela
,
L.
,
2003
, “
Applied Research Concerning the Direct Steam Generation in Parabolic Troughs
,”
Sol. Energy
,
74
(
4
), pp.
341
351
.
29.
Giostri
,
A.
,
Binotti
,
M.
,
Silva
,
P.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2011
, “
Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough vs. Fresnel
,”
ASME
Paper No. ES2011-54312.
30.
Martin
,
M.
, and
Berdahl
,
P.
,
1984
, “
Characteristics of Infrared Sky Radiation in the United States
,”
Sol. Energy
,
33
(
3
), pp.
321
336
.
31.
Eck
,
M.
, and
Steinmann
,
W. D.
,
2005
, “
Modelling and Design of Direct Solar Steam Generating Collector Fields
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
371
380
.
32.
Lobón
,
D. H.
, and
Valenzuela
,
L.
,
2013
, “
Impact of Pressure Losses in Small-Sized Parabolic-Trough Collectors for Direct Steam Generation
,”
Energy
,
61
, pp.
502
512
.
33.
Biencinto
,
M.
,
González
,
L.
, and
Valenzuela
,
L.
,
2016
, “
A Quasi-Dynamic Simulation Model for Direct Steam Generation in Parabolic Troughs Using TRNSYS
,”
Appl. Energy
,
161
, pp.
133
142
.
34.
Cui
,
Y.
, and
Yang
,
Y.
,
2009
, “
Thermal Performance and Hydrodynamic Analysis of Direct Steam Generation Solar Collectors
,”
Acta Energiae Slaris Sin.
,
30
(
3
), pp.
304
310
.
35.
Lin
,
Z.
,
Wang
,
S.
, and
Wang
,
D.
,
2003
,
Two Phase Flow and Boiling Heat Transfer
,
Xi'an Jiaotong University Press
,
Xi'an, China
.
36.
Thom
,
J. R. S.
,
1964
, “
Prediction of Pressure Drop During Forced Circulation Boiling of Water
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
709
724
.
37.
Zarza
,
E.
,
2007
, “
DISS-Phase II Project: Final Project Report
,” Report No. JOR3-CT980277.
38.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Clarendon Press
, Oxford, UK.
39.
Stephan
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling
,
Springer-Verlag
,
New York
.
40.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
41.
Li
,
L.
,
Yuan
,
D.
,
Jing
,
Y.
, and
Miao
,
X.
,
2010
, “
Simulation of Distributed Parameter Systems Using Method of Lines
,”
Chin. J. Sci. Instrum.
,
31
(
8
), pp.
504
507
.
42.
Yang
,
B.
,
2011
, “
Performance Analysis and Experimental Research on Direct Steam Generation Parabolic Trough Solar Thermal Power Plant
,” Ph.D. thesis, Tianjin University, Tianjin, China.
43.
Wang
,
G.
,
Kurtz
,
B.
, and
Kleissl
,
J.
,
2016
, “
Cloud Base Height From Sky Imager and Cloud Speed Sensor
,”
Sol. Energy
,
131
, pp.
208
221
.
44.
Feldhoff
,
J. F.
,
2015
, “
Analysis of Once-Through Boiler Concepts in Parabolic Troughs
,”
Dissertation
RWTH Aachen University, Aachen, Germany.
45.
Carlsbad Energy Center,
2007
, “
Wind Roses and Wind Speed Frequency Tables
,” California Energy Commission, Sacramento, CA, accessed Apr. 13, 2017, http://www.energy.ca.gov/sitingcases/carlsbad/documents/applicant/afc/CECP_Volume%202-Appendices/Appendix%205.1A-5.1F_Air%20Quality.pdf
You do not currently have access to this content.