Performance of photovoltaic (PV) module decreases significantly with increasing cell temperature due to its overheating. Photovoltaic thermal (PVT) is an optimized technology that facilitates effective removal and utilization of this excess heat leading to enhanced electrical performance. In this article, a 3D numerical model has been developed and analyzed to investigate the PVT performance with a new pancake-shaped flow channel design. This flow channel is attached directly to the backside of PV module by using thermal paste. The governing equations are solved numerically by using Galerkin's weighted residual finite-element method (FEM), which has been developed using COMSOL Multiphysics® software. The numerical results show that the cell temperature reduces on an average 42 °C, and the electrical efficiency and output power increase by 2% and 20 W, respectively, for both aluminum and copper channels with an increase in inlet velocity from 0.0009 to 0.05 m/s. On the other hand, overall efficiency of the PVT system drops about 13% in both cases as the inlet temperature increases from 20 °C to 40 °C. Cell temperature is found to increase approximately by 5.4 °C and 9.2 °C for every 100 W/m2 increase in irradiation level of the PV module with and without cooling system, respectively. Regarding flow channel material, it has been observed that use of either copper or aluminum produces almost similar performance of the PVT module.

References

1.
Hasanuzzaman
,
M.
,
Al-Amin
,
A. Q.
,
Khanam
,
S.
, and
Hosenuzzaman
,
M.
,
2015
, “
Photovoltaic Power Generation and Its Economic and Environmental Future in Bangladesh
,”
J. Renewable Sustainable Energy
,
7
(
1
), pp.
1
12
.
2.
Hosenuzzaman
,
M.
,
Rahim
,
N. A.
,
Selvaraj
,
J.
,
Hasanuzzaman
,
M.
,
Malek
,
A. B. M. A.
, and
Nahar
,
A.
,
2015
, “
Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
284
297
.
3.
Teo
,
H. G.
,
Lee
,
P. S.
, and
Hawlader
,
M. N. A.
,
2012
, “
An Active Cooling System for Photovoltaic Modules
,”
Appl. Energy
,
90
(
1
), pp.
309
315
.
4.
Riffat
,
S. B.
,
Zhao
,
X.
, and
Doherty
,
P. S.
,
2005
, “
Developing a Theoretical Model to Investigate Thermal Performance of a Thin Membrane Heat-Pipe Solar Collector
,”
Appl. Therm. Eng.
,
25
(5–6), pp.
899
915
.
5.
Ibrahim
,
A.
,
Othman
,
M. Y.
,
Ruslan
,
M. H.
,
Sohif
,
M.
, and
Kamaruzzaman
,
S.
,
2011
, “
Recent Advances in Flat Plate Photovoltaic/Thermal (PV/T) Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
352
365
.
6.
Charalambous
,
P. G.
,
Maidment
,
G. G.
,
Kalogirou
,
S. A.
, and
Yiakoumetti
,
K.
,
2007
, “
Photovoltaic Thermal (PV/T) Collectors: A Review
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
275
286
.
7.
Zondag
,
H. A.
,
2008
, “
Flat-Plate PV-Thermal Collectors and Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
891
959
.
8.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
379
.
9.
Hasan
,
M. A.
, and
Shumathy
,
K.
,
2010
, “
Photovoltaic Thermal Module Concepts and Their Performance Analysis: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1845
1859
.
10.
Tyagi
,
V. V.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2012
, “
Advancement in Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Technology
,”
Renewable Sustainable Energy Rev.
,
16
(
3
), pp.
1383
1398
.
11.
Hegazy
,
A. A.
,
2000
, “
Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors
,”
Energy Convers. Manage.
,
41
(
8
), pp.
861
881
.
12.
Tiwari
,
G. N.
,
Mishra
,
R. K.
, and
Solanki
,
S. C.
,
2011
, “
Photovoltaic Modules and Their Applications: A Review on Thermal Modeling
,”
Appl. Energy
,
88
(
7
), pp.
2287
2304
.
13.
Othman
,
M. Y.
,
Ibrahim
,
A.
,
Goh
,
L. J.
,
Ruslan
,
M. H.
, and
Kamaruzzaman
,
S.
,
2013
, “
Photovoltaic-Thermal (PV/T) Technology: The Future Energy Technology
,”
Renewable Energy
,
49
, pp.
171
174
.
14.
Eck
,
M.
,
Uhlig
,
R.
,
Mertins
,
M.
,
Haberle
,
A.
, and
Lerchenmuller
,
H.
,
2007
, “
Thermal Load of Direct Steam-Generating Absorber Tubes With Large Diameter in Horizontal Linear Fresnel Collectors
,”
Heat Transfer Eng.
,
28
(
1
), pp.
42
48
.
15.
Eck
,
M.
,
Jan
,
F. F.
, and
Uhlig
,
R.
,
2010
, “
Thermal Modeling and Simulation of Parabolic Trough Receiver Tubes
,”
ASME
Paper No. ES2010-90402.
16.
Koech
,
R. K.
,
Ondieki
,
H. O.
,
Tonui
,
J. K.
, and
Rotich
,
S. K.
,
2012
, “
A Steady State Thermal Model for Photovoltaic/Thermal (PV/T) System Under Various Conditions
,”
Int. J. Sci. Technol. Res.
,
1
(
11
), pp.
1
5
.
17.
Kumar
,
A.
, and
Prasad
,
B. N.
,
2000
, “
Investigation of Twisted Tape Inserted Solar Water Heaters—Heat Transfer, Friction Factor and Thermal Performance Results
,”
Renewable Energy
,
19
(
3
), pp.
379
398
.
18.
Fan
,
J.
,
Shah
,
L. J.
, and
Furbo
,
S.
,
2007
, “
Flow Distribution in a Solar Collector Panel With Horizontally Inclined Absorber Strips
,”
Sol. Energy
,
81
(
12
), pp.
1501
1511
.
19.
Chow
,
T. T.
,
He
,
W.
, and
Ji
,
J.
,
2007
, “
An Experimental Study of Façade-Integrated Photovoltaic/Water-Heating System
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
37
45
.
20.
Cadafalch
,
J.
,
2009
, “
A Detailed Numerical Model for Flat-Plate Solar Thermal Devices
,”
Sol. Energy
,
83
(12), pp.
2157
2164
.
21.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
Wiley
,
Hoboken, NJ
.
22.
Dubey
,
S.
,
Sandhu
,
G. S.
, and
Tiwari
,
G. N.
,
2009
, “
Analytical Expression for Electrical Efficiency of PV/T Hybrid Air Collector
,”
Appl. Energy
,
86
(
5
), pp.
697
705
.
23.
Sandnes
,
B.
, and
Rekstad
,
J.
,
2002
, “
A Photovoltaic/Thermal (PV/T) Collector With a Polymer Absorber Plate: Experimental Study and Analytical Model
,”
Sol. Energy
,
72
(
1
), pp.
63
73
.
24.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
, “
A Thermal Model for Photovoltaic Systems
,”
Sol. Energy
,
70
(
4
), pp.
349
359
.
25.
Bergene
,
T.
, and
Løvvik
,
O.
,
1995
, “
Model Calculations on a Flat-Plate Solar Heat Collector With Integrated Solar Cells
,”
Sol. Energy
,
55
(
6
), pp.
453
462
.
26.
Garg
,
H. P.
, and
Agarwal
,
R. K.
,
1995
, “
Some Aspects of a PV/T Collector/Forced Circulation Flat-Plat Solar Water Heater With Solar Cells
,”
Energy Convers. Manage.
,
36
(
2
), pp.
87
99
.
27.
Garg
,
H. P.
, and
Adhikari
,
R. S.
,
1997
, “
Conventional Hybrid Photovoltaic/Thermal (PV/T) Air Heating Collectors: Steady-State Simulation
,”
Renewable Energy
,
11
(
3
), pp.
363
385
.
28.
Chandrasekar
,
M.
,
Suresh
,
S.
,
Senthilkumar
,
T.
, and
Karthikeyan
,
M. G.
,
2013
, “
Passive Cooling of Standalone Flat PV Module With Cotton Wick Structures
,”
Energy Convers. Manage.
,
71
, pp.
43
50
.
29.
Zondag
,
H. A.
,
de Vries
,
D. W.
,
van Helden
,
W. G. J.
,
van Zolingen
,
R. J. C.
, and
van Steenhoven
,
A. A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Sol. Energy
,
72
(
2
), pp.
113
128
.
30.
Karanth
,
K. V.
,
Manjunath
,
M. S.
, and
Sharma
,
N. Y.
,
2011
, “
Numerical Simulation of a Solar Flat Plate Collector Using Discrete Transfer Radiation Model (DTRM)
,”
A CFD Approach in Proceedings of the World Congress on Engineering
, London, July 6–8.
31.
Rehena
,
N.
,
Parvin
,
S.
, and
Alim
,
M. A.
,
2014
, “
Effect of Prandtl Number on 3D Heat Transfer Through a Solar Collector
,”
International Conference on Mechanical
, Industrial and Energy Engineering, Khulna, Bangladesh.
32.
Siddiqui
,
U. M.
,
Arif
,
A. F. M.
,
Kelley
,
L.
, and
Dubowsky
,
S.
,
2012
, “
Three-Dimensional Thermal Modeling of a Photovoltaic Module Under Varying Conditions
,”
Sol. Energy
,
86
(
9
), pp.
2620
2631
.
33.
COMSOL
,
2015
, www.comsol.com
34.
Tiwari
,
A.
,
Sodha
,
M. S.
,
Chandra
,
A.
, and
Joshi
,
J. C.
,
2012
, “
Performance Evaluation of Photovoltaic Thermal Solar Air Collector for Composite Climate of India
,”
Sol. Energy Mater. Sol. Cells
,
90
(
2
), pp.
175
189
.
35.
Dubey
,
S.
, and
Andrew
,
A. O. T.
,
2013
, “
Testing of Two Different Types of Photovoltaic–Thermal (PVT) Modules With Heat Flow Pattern Under Tropical Climatic Conditions
,”
Energy Sustainable Dev.
,
17
(
1
), pp.
1
12
.
36.
McAdams
,
W. H.
,
1954
,
Heat Transmission
, 3rd ed.,
McGraw Hill
,
New York
.
37.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater
,”
Sol. Energy
,
82
(
7
), pp.
602
612
.
38.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting PV Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
39.
Joshi
,
A. S.
,
Tiwari
,
A.
,
Tiwari
,
G. N.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
154
164
.
40.
Fontenault
,
B. J.
, and
Gutierrez-Miravete
,
E.
,
2002
, “
Modeling a Combined Photovoltaic-Thermal Solar Panel
,”
COMSOL Conference
, Boston, MA, Oct. 3–5.
41.
Cattani
,
L.
,
2012
, “
Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes
,”
COMSOL Conference
, Milan, Italy, Oct. 10–12.
42.
Seyyedvalilu
,
M. H.
, and
Ranjbar
,
S. F.
,
2015
, “
The Effect of Geometrical Parameters on Heat Transfer and Hydro Dynamical Characteristics of Helical Exchanger
,”
Int. J. Recent Adv. Mech. Eng.
,
4
(
1
), pp.
35
46
.
43.
Salem
,
M. R.
,
Elshazly
,
K. M.
,
Sakr
,
R. Y.
, and
Ali
,
R. K.
,
2015
, “
Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(1), p.
011005
.
44.
Tiwari
,
A.
, and
Sodha
,
M. S.
,
2006
, “
Performance Evaluation of Hybrid PV/Thermal Water/Air Heating System: A Parametric Study
,”
Renewable Energy
,
31
(
15
), pp.
2460
2474
.
45.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
,
Behzadmehr
,
A.
, and
Adeli
,
M. M.
,
2010
, “
An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Appl. Energy
,
87
(
7
), pp.
2328
2339
.
46.
Radziemska
,
E.
,
2003
, “
The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells
,”
Renewable Energy
,
28
(
1
), pp.
1
12
.
47.
Dubey
,
S.
,
Jatin
,
N. S.
, and
Bharath
,
S.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World: A Review
,”
Energy Procedia
,
33
, pp.
311
321
.
48.
Rahman
,
M. M.
,
Hasanuzaman
,
M.
, and
Rahim
,
N. A.
,
2015
, “
Effects of Various Parameters on PV-Module Power and Efficiency
,”
Energy Convers. Manage.
,
103
, pp.
348
358
.
You do not currently have access to this content.