Bearing faults occur frequently in wind turbines, thus resulting in an unplanned downtime and economic loss. Vibration signal collected from a failing bearing exhibits modulation phenomenon and “cyclostationarity.” In this paper, the cyclostationary analysis is utilized to the vibration signal from the drive-end of the wind turbine generator. Fault features of the inner and outer race become visible in the frequency–cyclic frequency plane. Such fault signatures can not be produced by the traditional demodulation methods. Analysis results demonstrate effectiveness of the cyclostatonary analysis. The disassembled faulty bearing visualizes the fault.

References

1.
Amirat
,
Y.
,
Benbouzid
,
M. E. H.
,
Al-Ahmar
,
E.
,
Bensaker
,
B.
, and
Turri
,
S.
,
2009
, “
A Brief Status on Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2629
2636
.
2.
Marquez
,
F. P. G.
,
Tobias
,
A. M.
,
Perez
,
J. M. P.
, and
Papaelias
,
M.
,
2012
, “
Condition Monitoring of Wind Turbines: Techniques and Methods
,”
Renewable Energy
,
48
, pp.
110
116
.
3.
Wymore
,
M. L.
,
Dam
,
J. E. V.
,
Ceylan
,
H.
, and
Qiao
,
D.
,
2015
, “
A Survey of Health Monitoring Systems for Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
976
990
.
4.
Alewine
,
K.
, and
Chen
,
W.
,
2012
, “
A Review of Electrical Winding Failures in Wind Turbine Generators
,”
IEEE Electr. Insul. Mag.
,
28
(
4
), pp.
8
13
.
5.
Tavner
,
P. J.
,
2008
, “
Review of Condition Monitoring of Rotating Electrical Machines
,”
IET Electr. Power Appl.
,
2
(
4
), pp.
215
247
.
6.
Watson
,
S. J.
,
Xiang
,
B. J.
,
Yang
,
W. X.
,
Tavner
,
P. J.
, and
Crabtree
,
C. J.
,
2010
, “
Condition Monitoring of the Power Output of Wind Turbine Generators Using Wavelets
,”
IEEE Trans. Energy Convers.
,
25
(
3
), pp.
715
721
.
7.
Kusiak
,
A.
, and
Verma
,
A.
,
2012
, “
Analyzing Bearing Faults in Wind Turbines: A Data-Mining Approach
,”
Renewable Energy
,
48
(
6
), pp.
110
116
.
8.
Yang
,
W. X.
,
Court
,
R.
, and
Jiang
,
J. S.
,
2013
, “
Wind Turbine Condition Monitoring by the Approach of SCADA Data Analysis
,”
Renewable Energy
,
53
(
9
), pp.
365
376
.
9.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
.
10.
Li
,
R.
,
Sopon
,
P.
, and
He
,
D.
,
2012
, “
Fault Features Extraction for Bearing Prognostics
,”
J. Intell. Manuf.
,
23
(
2
), pp.
313
321
.
11.
Sawalhi
,
N.
,
Randall
,
R. B.
, and
Endo
,
H.
,
2007
, “
The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Combined With Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2616
2633
.
12.
Randall
,
R. B.
,
Sawalhi
,
N.
, and
Coats
,
M.
,
2011
, “
A Comparison of Methods for Separation of Deterministic and Random Signals
,”
Int. J. Cond. Monit.
,
1
(
1
), pp.
11
19
.
13.
Borghesani
,
P.
,
Pennacchi
,
P.
,
Randall
,
R. B.
,
Sawalhi
,
N.
, and
Ricci
,
R.
,
2013
, “
Application of Cepstrum Pre-Whitening for the Diagnosis of Bearing Faults Under Variable Speed Conditions
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
370
384
.
14.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2607
2615
.
15.
Park
,
C. S.
,
Choi
,
Y. C.
, and
Kim
,
Y. H.
,
2013
, “
Early Fault Detection in Automotive Ball Bearings Using the Minimum Variance Cepstrum
,”
Mech. Syst. Signal Process.
,
38
(
2
), pp.
534
548
.
16.
Teng
,
W.
,
Jiang
,
R.
,
Ding
,
X.
,
Liu
,
Y. B.
, and
Ma
,
Z. Y.
,
2016
, “
Detection and Quantization of Bearing Fault in Direct Drive Wind Turbine Via Comparative Analysis
,”
Shock Vib.
,
2016
(
2
), pp.
1
12
.
17.
Dandawate
,
A. V.
, and
Giannakis
,
B. G.
,
1994
, “
Statistical Tests for Presence of Cyclostationary
,”
IEEE Trans. Signal Process.
,
42
(
9
), pp.
2355
2368
.
18.
He
,
Z. J.
,
Zi
,
Y. Y.
, and
Zhang
,
X. N.
,
2007
,
Modern Signal Processing and Its Application in Engineering
,
Xi’an Jiaotong University Press
,
Xi’an, China
.
19.
Gardner
,
W. A.
,
1991
, “
Exploitation of Spectral Redundancy in Cyclostationary Signals
,”
IEEE Signal Process. Mag.
,
8
(
2
), pp.
14
36
.
20.
Gardner
,
W. A.
,
1986
, “
Measurement of Spectral Correlation
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
34
(
5
), pp.
1111
1123
.
21.
Gardner
,
W. A.
,
1986
, “
The Spectral Correlation Theory of Cyclostationary Time-Series
,”
Signal Process.
,
11
(
1
), pp.
13
36
.
22.
Antoni
,
J.
,
Bonnardot
,
F.
,
Raad
,
A.
, and
Badaoui
,
M. E.
,
2004
, “
Cyclostationary Modelling of Rotating Machine Vibration Signals
,”
Mech. Syst. Signal Process.
,
18
(
6
), pp.
1285
1314
.
23.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis in Practice
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
597
630
.
24.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions
,”
J. Sound Vib.
,
304
(
3–5
), pp.
497
529
.
25.
Raad
,
A.
,
Antoni
,
J.
, and
Sidahmed
,
M.
,
2008
, “
Indicators of Cyclostationarity: Theory and Applications to Gear Fault Monitoring
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
574
587
.
26.
Chen
,
J.
,
Pan
,
J.
,
Li
,
Z.
,
Zi
,
Y.
, and
Chen
,
X.
,
2016
, “
Generator Bearing Fault Diagnosis Via Empirical Wavelet Transform Using Measured Vibration Signals
,”
Renewable Energy
,
89
, pp.
80
92
.
27.
Tang
,
B.
,
Liu
,
W.
, and
Song
,
T.
,
2010
, “
Wind Turbine Fault Diagnosis Based on Morlet Wavelet Transformation and Wigner–Ville Distribution
,”
Renewable Energy
,
35
(
12
), pp.
2822
2866
.
28.
Zhang
,
X. D.
, and
Bao
,
Z.
,
1998
,
Nonstationary Signal Analysis and Processing
,
National Defense Industry Press
,
Beijing, China
.
29.
Allen
,
J. B.
,
1977
, “
Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
25
(
3
), pp.
235
238
.
30.
VDI 3834
,
2009
, “
Measurement and Evaluation of the Mechanical Vibration of Wind Energy Turbines and Their Components Onshore Wind Energy Turbines With Gears
,” Verlag des Vereins Deutscher Ingenieure, p.
16
.
31.
Gilles
,
J.
,
2013
, “
Empirical Wavelet Transform
,”
IEEE Trans. Signal Process.
,
61
(
16
), pp.
3999
4010
.
You do not currently have access to this content.